Cookies

We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Department of Physics

Staff profile

Publication details for Professor Stewart Clark

Liu, D., Clark, S.J. & Robertson, J. (2010). Oxygen vacancy levels and electron transport in Al(2)O(3). Applied Physics Letters 96(3): 032905.

Author(s) from Durham

Abstract

The energy levels of the oxygen vacancy in α- and θ-Al2O3 were calculated using the screened exchange hybrid functional, and explain the electron hopping and trapping levels seen in deposited Al2O3 at ∼ 1.8 eV below its conduction band edge. The vacancy supports five accessible charge states, from 2+ to 2−. Electron hopping corresponds to the 0/− level, which lies 1.8 eV below the conduction band edge in θ-Al2O3. This level lies much deeper than it does HfO2. The +/0 level lies at 2.8 eV above oxide valence band in θ-Al2O3 and thus below the Si valence band top.