We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Department of Physics

Staff profile

Publication details for Professor Stewart Clark

Crain, J., Piltz, R. O., Ackland, G. J., Clark, S. J., Payne, M. C., Milman, V., Lin, J. S., Hatton, P. D. & Nam, Y. H. (1994). Tetrahedral structures and phase transitions in III-V semiconductors. Physical Review B 50(12): 8389-8401.

Author(s) from Durham


The BC8 structure (body-centered cubic with eight atoms per cell) is a known pressure-induced modification of both silicon and germanium. However, its diatomic analogue [the SC16 structure (a simple cubic lattice with a basis of 16 atoms)] has never been found in compound semiconductors. We find from total-energy pseudopotential calculations that the SC16 structure is a stable high-pressure polymorph of the III-V semiconductors GaAs, InAs, and AlSb. We report ab initio calculations of the structural, electronic, and vibrational properties of SC16-GaAs. The wurtzite structure is found to be unstable at all pressures for each compound considered. We consider possible transition routes consistent with our high-pressure x-ray diffraction results and propose that the formation of the SC16 structure in compounds is kinetically inhibited by the formation of wrong bonds at the structural transition.