We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Department of Physics

Staff profile

Publication details for Dr Richard Wilman

Wilman, R. J., Gerssen, J., Bower, R. G., Morris, S. L., Bacon, R., de Zeeuw, P. T. & Davies, R. L. (2005). The discovery of a galaxy-wide superwind from a young massive galaxy at redshift z ≈ 3. Nature 436(7048): 227-229.

Author(s) from Durham


High-velocity galactic outflows, driven by intense bursts of star formation and black hole accretion, are processes invoked by current theories of galaxy formation to terminate star formation in the most massive galaxies and to deposit heavy elements in the intergalactic medium. From existing observational evidence (for high-redshift galaxies) it is unclear whether such outflows are localized to regions of intense star formation just a few kiloparsecs in extent, or whether they instead have a significant impact on the entire galaxy and its surroundings. Here we present two-dimensional spectroscopy of a star-forming galaxy at redshift z = 3.09 (seen 11.5gigayears ago, when the Universe was 20 per cent of its current age): its spatially extended Lyalpha line emission appears to be absorbed by HI in a foreground screen covering the entire galaxy, with a lateral extent of at least 100kpc and remarkable velocity coherence. This screen was ejected from the galaxy during a starburst several 108 years earlier and has subsequently swept up gas from the surrounding intergalactic medium and cooled. This demonstrates the galaxy-wide impact of high-redshift superwinds.


1. Benson, A. J. et al. What shapes the luminosity function of galaxies? Astrophys.
J. 599, 38–-49 (2003).
2. Pettini, M. et al. The rest-frame optical spectra of Lyman break galaxies: star
formation, extinction, abundances, and kinematics. Astrophys. J. 554, 981–-1000
3. Pettini, M. et al. New observations of the interstellar medium in the Lyman
break galaxy MS 1512-cB58. Astrophys. J. 569, 742–-757 (2002).
4. Steidel, C. C. et al. Lya imaging of a proto-cluster region at ,z.¼3.09.
Astrophys. J. 532, 170–-182 (2000).
5. Lehnert, M. D., Heckman, T. M. & Weaver, K. A. Very extended X-ray and Ha
emission in M82: implications for the superwind phenomenon. Astrophys. J.
523, 575–-584 (1999).
6. Adelberger, K. L., Steidel, C. C., Shapley, A. E. & Pettini, M. Galaxies and
intergalactic matter at redshift z , 3: overview. Astrophys. J. 584, 45–-75
7. Chapman, S. C. et al. Further multiwavelength observations of the SSA 22
Lya-emitting blob. Astrophys. J. 606, 85–-91 (2004).
8. Taniguchi, Y. & Shioya, Y. Superwind model of extended Lya emitters at high
redshift. Astrophys. J. 532, 13–-16 (2000).
9. Fardal, M. A. et al. Cooling radiation and the Lya luminosity of forming
galaxies. Astrophys. J. 562, 605–-617 (2001).
10. Chapman, S. C. et al. Submillimeter imaging of a protocluster at z ¼ 3.09.
Astrophys. J. 548, 17–-21 (2001).
11. Basu-Zych, A. & Scharf, C. X-ray detection of an obscured active galactic
nucleus in a z ¼ 3.09 radio-quiet Lya nebula. Astrophys. J. 615, 85–-88 (2004).
12. Bacon, R. et al. The SAURON project—I. The panoramic integral-field
spectrograph. Mon. Not. R. Astron. Soc. 326, 23–-35 (2001).
13. Bower, R. G. et al. Deep SAURON spectral imaging of the diffuse Lya halo LAB-
1 in SSA 22. Mon. Not. R. Astron. Soc. 351, 63–-69 (2004).
14. Tenorio-Tagle, G., Silich, S. A., Kunth, D., Terlevich, E. & Terlevich, R. The
evolution of superbubbles and the detection of Lya in star-forming galaxies.
Mon. Not. R. Astron. Soc. 309, 332–-342 (1999).
15. Mas-Hesse, J. M. et al. Lya emission in starbursts: implications for galaxies at
high redshift. Astrophys. J. 598, 858–-877 (2003).
16. Sutherland, R. S. & Dopita, M. A. Cooling functions for low-density
astrophysical plasmas. Astrophys. J. Suppl. 88, 253–-327 (1993).
17. Binette, L., Kurk, J. D., Villar-Martı´n, M. & Ro¨ttgering, H. J. A. A vestige low
metallicity gas shell surrounding the radio galaxy 0943–-242 at z ¼ 2.92.
Astron. Astrophys. 356, 23–-32 (2000).
18. Rocca-Volmerange, B., Le Borge, D., De Breuck, C., Fioc, M. & Moy, E. The
radio galaxy K-z relation: The 1012M( mass limit. Astron. Astrophys. 415,
931–-940 (2004).
19. Neufeld, D. A. The transfer of resonance-line radiation in static astrophysical
media. Astrophys. J. 350, 216–-241 (1990).
20. Steidel, C. C. The properties of absorption-line selected high-redshift galaxies.
in The Environment and Evolution of Galaxies (eds Shull, J. M. & Thronson, H. A.)
263–-294 (Kluwer Academic, Dordrecht, 1993).
21. Boissier, S., Pe´roux, C. & Pettini, M. Damped Lyman a systems and disc
galaxies: number density, column density distribution and gas density. Mon.
Not. R. Astron. Soc. Lett. 338, 131–-140 (2003).
22. Dave´, R., Hernquist, L., Katz, N. & Weinberg, D. H. The low-redshift Lyman a
forest in cold dark matter cosmologies. Astrophys. J. 511, 521–-545 (1999).
23. Schaye, J. On the relation between high-redshift starburst galaxies and
damped Lya absorption systems. Astrophys. J. 559, 1–-4 (2001).