We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Department of Engineering

Staff Profile

Publication details for Professor Simon Mathias

Mathias, S.A., McElwaine, J.N. & Gluyas, J.G. (2014). Heat transport and pressure buildup during carbon dioxide injection into depleted gas reservoirs. Journal of Fluid Mechanics 756: 89-109.

Author(s) from Durham


In this article, a two-layer vertical equilibrium model for the injection of carbon dioxide into a low-pressure porous reservoir containing methane and water is developed. The dependent variables solved for include pressure, temperature and $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}{\mathrm{CO}}_2$–${\mathrm{CH}}_4$ interface height. In contrast to previous two-layer vertical equilibrium models in this context, the compressibility of all material components is fully accounted for. Non-Darcy effects are also considered using the Forchheimer equation. The results show that, for a given injection scenario, as the initial pressure in the reservoir decreases, both the pressure buildup and temperature change increase. A comparison was conducted between a fully coupled non-isothermal numerical model and a simplified model where fluid properties are held constant with temperature. This simplified model was found to provide an excellent approximation when using the injection fluid temperature for calculating fluid properties, even when the injection fluid was as much as $\pm 15\, ^\circ \mathrm{C}$ of the initial reservoir temperature. The implications are that isothermal models can be expected to provide useful estimates of pressure buildup in this context. Despite the low viscosity of ${\mathrm{CO}}_2$ at the low pressures studied, non-Darcy effects were found to be of negligible concern throughout the sensitivity analysis undertaken. This is because the ${\mathrm{CO}}_2$ density is also low in this context. Based on these findings, simplified analytic solutions are derived, which accurately calculate both the pressure buildup and temperature decline during the injection period.