We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Department of Engineering

Staff Profile

Publication details for Professor David Toll

Lourenço, S.D.N., Gallipoli, D., Toll, D.G., Augarde, C.E. & Evans, F.D. (2011), Advances in tensiometer-based suction control systems, in Alonso, E. & Gens, A. eds, Unsaturated Soils 1: 5th International Conference on Unsaturated Soils. Barcelona, Spain, CRC Press/Balkema, Leiden, 695-700.

Author(s) from Durham


Cunningham (2000) and Jotisankasa (2005) pioneered the development of tensiometer-based suction control systems. In these systems, wetting and drying of the soil are achieved by water injection and circulation of air in contact with the specimen while suction is monitored by sample-mounted high suction tensiometers. Unlike the axis translation technique, these systems avoid using elevated air pressures and better reproduce the drying and wetting conditions occurring in the field. Building upon these earlier works, this pa-per describes an automated tensiometer-based suction control system that enables direct measurement of water content changes inside the sample. A diaphragm pump forces air to flow inside a closed loop that runs across the sample while a moisture trap ensures that the relative humidity of the circulating air is kept low. As the circulating air dries the soil, the amount of abstracted water is measured by continuous weighing of the desiccant inside the moisture trap. Wetting of the sample is instead achieved by controlled injection of water through a solenoid valve connected to a pressurized volume gauge. The changes of soil water content are given by the difference between the amounts of water injected by the volume gauge and that retained by the desiccant. The system is used to impose cycles of drying and wetting on compacted clayey specimens and results from preliminary tests are presented.