Cookies

We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Department of Engineering

Staff Profile

Publication details for Professor Dagou Zeze

Boskovic, B. O., Stolojan, V., Zeze, D. A., Forrest, R. D., Silva, S. R. P. & Haq, S. (2004). Branched carbon nanofiber network synthesis at room temperature using radio frequency supported microwave plasmas. Journal of applied physics 96(6): 3443-3446.

Author(s) from Durham

Abstract

Carbon nanofibers have been grown at room temperature using a combination of radio frequency
and microwave assisted plasma-enhanced chemical vapor deposition. The nanofibers were grown,
using Ni powder catalyst, onto substrates kept at room temperature by using a purposely designed
water-cooled sample holder. Branched carbon nanofiber growth was obtained without using a
template resulting in interconnected carbon nanofiber network formation on substrates held at room
temperature. This method would allow room-temperature direct synthesized nanofiber networks
over relatively large areas, for a range of temperature sensitive substrates, such as organic materials,
plastics, and other polymers of interest for nanoelectronic two-dimensional networks,
nanoelectromechanical devices, nanoactuators, and composite materials.

References

1H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley,
Nature (London) 318, 162 (1985).
2S. Iijima, Nature (London) 354, 56 (1991).
3W. R. Davis, R. J. Slawson, and G. R. Rigby, Nature (London) 171, 756
(1953).
4N. M. Rodriguez, J. Mater. Res. 8, 3233 (1993).
5L. C. Qin, D. Zhou, A. R. Krauss, and D. M. Gruen, Appl. Phys. Lett. 72,
3437 (1998).
6S. H. Tsai, C. W. Chao, C. L. Lee, and H. C. Shih, Appl. Phys. Lett. 74,
3462 (1999).
7Y. C. Choi et al., Appl. Phys. Lett. 76, 2367 (2000).
8C. Bower, W. Zhu, S. Jin, and O. Zhou, Appl. Phys. Lett. 77, 830 (2000).
9M. Okai, T. Muneyoshi, T. Yaguchi, and S. Sasaki, Appl. Phys. Lett. 77,
3468 (2000).
10F. Hoshi et al., Diamond Relat. Mater. 10, 254 (2001).
11B. Q. Wei, R. Vajtai, and P. M. Ajayan, Appl. Phys. Lett. 79, 1172 (2001).
12M. J. Biercuk, M. C. Liaguno, M. Radisavljevic, J. K. Hyun, A. T.
Johnson, and J. E. Fischer, Appl. Phys. Lett. 80, 2767 (2002).
13M. Menon and D. Sristava, Phys. Rev. Lett. 79, 4453 (1997).
14J. Li, C. Papadopoulos and J. M. Xu, Nature (London) 402, 253 (1999).
15P. L. McEuen, Nature (London) 393, 15 (1998).
16L. Kouwenhoven, Science 275, 1896 (1997).
17L. Chico, V. H. Crespi, L. X. Benedict, S. G. Louie, and M. L. Cohen,
Phys. Rev. Lett. 76, 971 (1996).
18B. C. Satishkumar, P. J. Thomas, A. Govindaraj, and C. N. R. Rao, Appl.
Phys. Lett. 77, 2350 (2000).
19W. Z. Li, J. G. Wen and Z. F. Ren, Appl. Phys. Lett. 79, 1879 (2001).
20J.-M. Ting and C.-C. Chang, Appl. Phys. Lett. 80, 324 (2002).
21G. W. Ho, A. T. S. Wee, and J. Lin, Appl. Phys. Lett. 79, 260 (2001).
22B. O. Boskovic, V. Stolojan, R. U. A. Khan, S. Haq, and S. R. P. Silva,
Nat. Mater. 1, 165 (2002).
23S. Hofmann, C. Ducati, B. Kleinsorge, and J. Robertson, Appl. Phys. Lett.
83, 4661 (2003).
24A. Chambers, C. Park, R. T. K. Baker, and N. Rodriguez, J. Phys. Chem.
B 102, 4253 (1998).
25R. T. K. Baker and P. S. Harris, in Chemistry and Physics of Carbon,
edited by P. L. Walker, Jr. and P. A. Thrower (Marcel Dekker, New York,
1978), Vol. 14, p. 83.
26R. T. K. Baker, P. S. Harris, R. B. Thomas, and R. J. Waite, J. Catal. 30,
86 (1973).
27C. Bower, O. Zhou, W. Zhu, D. J. Werder, and S. Jin, Appl. Phys. Lett.
77, 2767 (2000).
28S. H. Tsai, C. T. Shiu, W. J. Jong, and H. C. Shih, Carbon 38, 1879
(2000).
29M. Terrones, F. Banhart, N. Grobert, J. C. Charlier, and H. Terrones, Phys.
Rev. Lett. 89, 075505 (2002).
30A. V. Krasheninnikov, K. Nordlund, J. Keinonen, and F. Banhart, Phys.
Rev. B 66, 245403 (2002);A. V. Krasheninnikov, K. Nordlund, J. Keinonen,
and F. Banhart, Nucl. Instrum. Methods Phys. Res. B 202, 224
(2003).
31A. C. Ferrari and J. Robertson, Phys. Rev. B 61, 14095 (2000).
32C. Castiglioni, F. Negri, M. Rigolio, and G. Zerbi, J. Phys. Chem. 115,
3769 (2001).
33C. Thomsen and S. Reich, Phys. Rev. Lett. 85, 5214 (2000).
34F. Hoshi et al., Diamond Relat. Mater. 10, 254 (2001).
35A. Chambers, C. Park, R. T. K. Baker, and N. Rodriguez, J. Phys. Chem.
B 102, 4253 (1998).
36E. S. Swon, J. P. Novak, P. M. Campbel, and D. Park, Appl. Phys. Lett.
82, 2145 (2003).
37S. Hofmann, C. Ducati, B. Kleinsorge, and J. Robertson, Appl. Phys. Lett.
83, 135 (2003).