Publication details for Prof. J.A. Gareth Williams
Walter, Edward R. H., Fox, Mark A., Parker, David & Williams, J. A. Gareth (2018). Enhanced selectivity for Mg2+ with a phosphinate-based chelate: APDAP versus APTRA. Dalton Transactions 47(6): 1755-1763.- Publication type: Journal Article
- ISSN/ISBN: 1477-9226 (print), 1477-9234 (electronic)
- DOI: 10.1039/C7DT04698G
- Further publication details on publisher web site
- Durham Research Online (DRO) - may include full text
Author(s) from Durham
Abstract
o-Aminophenol-N,N,O-triacetate, known as APTRA, is one of the most well-established ligands for targeting magnesium ions but, like other aminocarboxylate ligands, it binds Ca2+ much more strongly than Mg2+. The synthesis of an O-phosphinate analogue of APTRA is reported here, namely o-aminophenol-N,N-diacetate-O-methylene-methylphosphinate, referred to as APDAP. Metal binding studies monitored using UV-visible spectroscopy show that the affinity of APDAP for Ca2+ is reduced by over two orders of magnitude compared to APTRA, and for Zn2+ by over three orders of magnitude, whereas the affinity for Mg2+ is attenuated to a much lesser extent, by a factor of only about 7. The selectivity towards Mg2+ is thus substantially improved. DFT calculations support the notion that longer P–O and P–C bonds in APDAP (compared to corresponding C–O and C–C bonds in APTRA) favour a larger angle at the metal, an effect that is less unfavourable for smaller ions like Mg2+ than for larger ions such as Ca2+. Derivatives of APDAP can be anticipated that will offer improved sensing of Mg2+ in the presence of Ca2+, in the physiologically important millimolar concentration range.