We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Department of Chemistry

Publication details for Prof. Graham Sandford

Pattison, G., Sandford, G., Wilson, I., Yufit, D.S., Howard, J.A.K., Christopher, J.A. & Miller, D.D. (2017). Polysubstituted and ring-fused pyridazine systems from tetrafluoropyridazine. Tetrahedron 73(5): 437-454.

Author(s) from Durham


Tetrafluoropyridazine 1 reacts with a range of oxygen-, nitrogen-, sulfur- and carbon-centred nucleophiles to give, in general, products 2 arising from substitution of fluorine para to ring nitrogen. Subsequent reaction of the trifluoropyridazine derivatives 2 gave a range of 4,5-di- and tri-substituted products 3 and 6. Related reactions of tetrafluoropyridazine 1 with difunctional nucleophiles gave [6,6]-, [5,6]- and [6,5,6]-polycyclic ring fused pyridazine scaffolds 4 and 9. Further functionalisation of scaffolds 4 by nucleophlic aromatic substitution processes involving displacement of fluorine atoms at activated sites ortho to ring nitrogen provide an indication of the synthetic possibilities offered using tetrafluoropyridazine as a starting material for the preparation of polysubstituted pyridazine and novel polyfunctional ring fused pyridazine systems with potential applications in the drug discovery arena.