We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Department of Chemistry

Publication details for Prof. Andrew Beeby

Gluyas, J.B.G., Manici, V., Gückel, S., Vincent, K.B., Yufit, D.S., Howard, J.A.K., Skelton, B.W., Beeby, A., Kaupp, M. & Low, P.J. (2015). Cross-Conjugated Systems Based On An (E)-Hexa-3-en-1,5-diyne-3,4-diyl Skeleton: Spectroscopic and Spectroelectrochemical Investigations. The Journal of Organic Chemistry 80(22): 11501-11512.

Author(s) from Durham


A series of cross-conjugated compounds based on an (E)-4,4′-(hexa-3-en-1,5-diyne-3,4-diyl)bis(N,N-bis(4-methoxyphenyl)aniline) skeleton (1–6) have been synthesized. The linear optical absorption properties can be tuned by modification of the substituents at the 1 and 5 positions of the hexa-3-en-1,5-diynyl backbone (1: Si(CH(CH3)2)3, 2: C6H4C≡CSi(CH3)3, 3: C6H4COOCH3, 4: C6H4CF3, 5: C6H4C≡N, 6: C6H4C≡CC5H4N), although attempts to introduce electron-donating (C6H4CH3, C6H4OCH3, C6H4Si(CH3)3) substituents at these positions were hampered by the ensuing decreased stability of the compounds. Spectroelectrochemical investigations of selected examples, supported by DFT-based computational studies, have shown that one- and two-electron oxidation of the 1,2-bis(triarylamine)ethene fragment also results in electronic changes to the perpendicular π-system in the hexa-3-en-1,5-diynyl branch of the molecule. These properties suggest that (E)-hexa-3-en-1,5-diynyl-based compounds could have applications in molecular sensing and molecular electronics.