We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Department of Chemistry

Publication details for Dr Philip W. Dyer

Rowbotham, Jack S., Aguilar, Juan A., Kenwright, Alan M., Greenwell, H. Christopher & Dyer, Philip W. (2020). Solution-state behaviour of algal mono-uronates evaluated by pure shift and compressive sampling NMR techniques. Carbohydrate Research 495: 108087.

Author(s) from Durham


Sodium salts of the algal uronic-acids, d-mannuronic acid (HManA) and l-guluronic acid (HGulA) have been isolated and characterised in solution by nuclear magnetic resonance (NMR) spectroscopy. A suite of recently-described NMR experiments (including pure shift and compressive sampling techniques) were used to provide confident assignments of the pyranose forms of the two uronic acids at various pD values (from 7.5 to 1.4). The resulting high resolution spectra were used to determine several previously unknown parameters for the two acids, including their pKa values, the position of their isomeric equilibria, and their propensity to form furanurono-6,3-lactones. For each of the three parameters, comparisons are drawn with the behaviour of the related D-glucuronic (HGlcA) and D-galacturonic acids (HGalA), which have been previously studied extensively. This paper demonstrates how these new NMR spectroscopic techniques can be applied to better understand the properties of polyuronides and uronide-rich macroalgal biomass.