Cookies

We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Department of Chemistry

Prof. Martin R. Bryce

Professor in the Department of Chemistry
Telephone: +44 (0) 191 33 42018
Room number: Chemistry

(email at m.r.bryce@durham.ac.uk)

Biography

Martin Bryce was born near Birmingham, UK and graduated from Wolverhampton Polytechnic (B.Sc. 1st class). He completed a D.Phil. at York University under the guidance of John Vernon and Peter Hanson in 1978. Following postdoctoral appointments at the University of British Columbia,Vancouver (with Larry Weiler) and the University of Bristol (with Roger Alder) he joined Durham University. He was promoted to Professor of Chemistry in 1995. He is the recipient of the Ciba-Geigy Award for academic collaboration in Europe (1990), the Royal Society of Chemistry Bader Award (1992), the Royal Society of Chemistry Interdisciplinary Award (1992), the Nuffield Foundation Science Research Fellowship (1993), the University of Durham Sir Derman Christopherson Fellowship (1995) and the Royal Society of Chemistry Heterocyclic Chemistry Award (2002). Martin has held Visiting Scientist positions at the University of California,Santa Barbara, and the University of Copenhagen. He was a Troisième Cycle Lecturer at several universities in Switzerland in 2008 and Tarrant Visiting Professor at the University of Florida, Gainesville in 2013. Since 1990 he has been the co-director of the Durham University Centre for Molecular and Nanoscale Electronics. He was the Scientific Editor of the Journal of Materials Chemistry (1995-2000). Martin coordinated the EC FP7 Marie Curie ITN “Fundamentals of Molecular Electronic Assemblies” (FUNMOLS) (2008-2012) and is the coordinator of the ITN “Molecular-Scale Electronics” (MOLESCO) (2014-2017) comprising 10 European partner laboratories. 

Research Interests

The work in Martin’s group is rooted in new synthetic chemistry. Current themes include:

  • The synthesis of organic molecules and polymers - especially heteroaromatic and organometallic systems - that possess specifically designed properties, e.g. self-assembly, photo- and electro-luminescence, inter- or intra-molecular charge-transfer, and their applications in optoelectronic devices, such as organic light-emitting diodes (OLEDs) and displays, organic lighting panels and solar cells
  • Molecular (single-molecule) and nanoscale electronics for advanced technology applications
  • The development of new methodology for the synthesis of highly-functionalised heterocycles of importance to the pharmaceutical and agrochemical sectors. 

Materials for Organic Light-Emitting Devices (OLEDs)

The ability to control the optoelectronic properties of conjugated molecular and polymeric systems is a fascinating issue in the design of new materials for light-emitting devices and displays that offer bright colours and a high degree of resolution. Deep blue fluorescent and phosphorescent emitters and white light devices (WOLEDs)1 are of particular current interest. Representative recent work in our laboratory concerns bipolar carbazole-oxadiazole molecules 12 and 2,3and oligomers and polymers based on hybrid fluorene–dibenzothiophene-S,S-dioxide systems, e.g. 3.4 These materials are used as electroluminescent and electron-transporting layers. New cyclometallated iridium complexes, e.g. 4, are being studied in high-efficiency light-emitting electrochemical cells.5 We are also developing new phosphorescent green and blue emitters based on homoleptic and heteroleptic cyclometallated Ir complexes of heterocyclic ligands,6 e.g. 5. This is interdisciplinary work involving close collaboration with colleagues in theSchool ofEngineering (Prof. Mike Petty) and Department of Physics (Prof Andy Monkman) inDurham, and with our industrial sponsors who are commercialising some of these materials for display technologies and lighting applications. 

Molecular (Single-molecule) and Nanoscale Electronics

Molecular (nanoscale) electronics is attracting great attention due to potential applications in future sensor devices, computing technology and related fields. The work in Martin’s group is highly interdisciplinary involving close collaboration with experimentalists for electrical measurements and imaging data using Scanning Tunneling Microscopy and related techniques (Universities of Liverpool, Bern, Basel, Madrid, Erlangen-Nurnberg) and theoreticians (University of Lancaster). In this context we are developing monodisperse oligomers which are ca. 2-10 nm in length ("molecular wires") comprising conjugated backbones with terminal substituents (e.g. thiol, pyridyl, fullerenes) which assemble onto metal electrodes to provide metal | molecule | metal junctions. These are oligo(aryleneethynylene) derivatives,7 e.g. molecule 6, tolane derivatives,8 oligoyne derivatives 79  and oligofluorene derivatives10 for probing the electrical properties of single molecules. We have also designed and synthesised molecules which successfully bridge silicon nanogaps.11

 

Related projects probe photoinduced charge transport through conjugated systems end-capped with donor and acceptor units;12 oligoyne derivatives 8 are a prototype series of molecules synthesised in Martin’s laboratory. Oligofluorene bridges have been probed as molecular wires in molecules such as 9 (with Prof. Dirk Guldi, University of Erlangen-Nurnberg).13 A wide range of techniques are applied to the study of these molecules, including cyclic voltammetry, spectroelectrochemistry, steady-state and time-resolved photolysis, X-ray crystallography, EPR spectroscopy and DFT/TD-DFT calculations.

New Synthetic Methodology for Highly-Functionalised Heterocycles

New reagents and methodologies for the synthesis of highly-functionalised nitrogen-containing heterocycles are ongoing topics. In this context we have developed new metal-catalysed cross-coupling protocols (Suzuki-Miyaura and Sonogashira reactions) leading to a range of pyridyl,14 and pyridazinyl systems,15 e.g. 10-13. Recent related chemistry has led to new pyrazolyl,16 benzimidazolyl17 and pyridin-2(1H)-one systems18 including multi-heteroaryl derivatives which are key building blocks for more complex heterocyclic systems. Some of these compounds are being evaluated for pharmaceutical and agrochemical activity by our industrial sponsors. 

References

  1. K. T. Kamtekar, A. P. Monkman, M. R. Bryce, Adv. Mater. 2010, 22, 572.
  2. A. L. Fisher, K. E. Linton, K. T. Kamtekar, C. Pearson, M. R. Bryce, M. C. Petty, Chem. Mater. 2011, 23, 1640-1642; K. E. Linton, A. L. Fisher, C. Pearson, M. A. Fox, L.-O. Palsson, M. R. Bryce, M. C. Petty, J. Mater. Chem. 2012, 22, 11816
  3. Y. Zheng, A. S. Batsanov, V. Jankus, F. B. Dias, M. R. Bryce, A. P. Monkman, J. Org. Chem. 2011, 76, 8300-8310.
  4. I.I.Perepichka, I.F. Perepichka, M. R. Bryce, L.-O. Palsson, Chem. Commun. 2005, 3397; S. M. King, I. I. Perepichka, I. F. Perepichka, F. B. Dias, M. R. Bryce, A. P. Monkman, Adv. Funct. Mater. 2009, 19, 586; H. Li, A. S. Batsanov, K. C. Moss, H. L. Vaughan, F. B. Dias, K. T. Kamtekar, M. R. Bryce, A. P. Monkman, Chem. Commun. 2010, 46, 4812-4814; K. T. Kamtekar, H. L. Vaughan, B. P. Lyons, A. P. Monkman, S. U. Pandya, M. R. Bryce, Macromolecules 2010, 43, 4481-4488.
  5. X. Zeng, M. Tavasli, I.F. Perepichka, A. S. Batsanov, M. R. Bryce, C.-J. Chiang, C. Rothe, A. P. Monkman, Chem. Eur. J. 2008, 14, 933; C. Rothe, C.-J. Chiang, V. Jankus, M. R. Bryce, X. Zeng and A. P. Monkman, Adv. Funct. Mater. 2009, 19, 2038-2044; J. Zhang, L. Zhou, H. A. Al-Attar, K. Shao, L. Wang, D. Zhu, Z. Su, M. R. Bryce, A. P. Monkman, Adv. Funct. Mater. 2013, 23, 4667-4677.
  6. Y. Zheng, A. S. Batsanov, M. R. Bryce, Inorg. Chem. 2011, 50, 3354-3362; V. N. Kozhevnikov, K. Dahms, M. R. Bryce, J. Org. Chem. 2011, 76, 5143-51478; H. A. Al-Attar, G. C. Griffiths, T. N. Moore, M. Tavasli, M. A. Fox, M. R. Bryce, A. P. Monkman, Adv. Funct. Mater. 2011, 21, 2376-2382; Y. Zheng, A. S. Batsanov, R. M. Edkins, A. Beeby, M. R. Bryce, Inorg. Chem. 2012, 51, 290-297; M. Tavasli, T. N. Moore, Y. Zheng, M. R. Bryce, M. A. Fox, G. C. Griffiths, V. Jankus, H. A. Al-Attar, A. P. Monkman, J. Mater. Chem. 2012, 22, 6419; V. N. Kozhevnikov, Y. Zheng, M. Clough, H. A. Al-Attar, G. C. Griffiths, K. Abdullah, S. Raisys, V. Jankus, M. R. Bryce, A. P. Monkman, Chem. Mater. 2013, 25, 2352-2358.
  7. W. Haiss, C. Wang, I. Grace, A. S. Batsanov, D. J. Schiffrin, S. J. Higgins, M. R. Bryce, C. J. Lambert, R. J. Nichols, Nature Materials 2006, 5, 995; R. Huber, M. T. Gonzalez, S. Wu, M. Langer, S. Grunder, V. Horhoiu, M. Mayor, M. R. Bryce, C. Wang, R. Jitchati, C. Schoenenberger, M. Calame, J. Am. Chem. Soc. 2008, 130, 1080; C. Wang, M. R. Bryce, J. Gigon, G. J. Ashwell, I. Grace, C. J. Lambert, J. Org. Chem. 2008, 73, 4810; S. Martin, I. Grace, M. R. Bryce, C. Wang, R. Jitchati, A. S. Batsanov, S. J. Higgins, C. J. Lambert, R. J. Nichols, J. Am. Chem. Soc. 2010, 132, 9157-9164.
  8. W. Hong, D. Z. Manrique, P. M. García, M. Gulcur, A. Mishchenko, C. J. Lambert, M. R. Bryce, T. Wandlowski, J. Am. Chem. Soc. 2012, 134, 2292.
  9. C. Wang, A. S. Batsanov, M. R. Bryce, S. Martin, R. J. Nichols, S. J. Higgins, V. M. Garcia-Suarez, C. J. Lambert, J. Am. Chem. Soc. 2009, 131, 15647; S. Ballmann, R. Härtle, P. B. Coto, M. Elbing, M. Mayor, M. R. Bryce, M. Thoss, H. B. Weber, Phys. Rev. Lett. 2012, 109, 056801; P. Moreno-Garcia, M. Gulcur, D. Z. Manrique, T. Pope, W. Hong, V. Kaliginedi, C. Huang, A. S. Batsanov, M. R. Bryce, C. Lambert, T. Wandlowski, J. Am. Chem. Soc. 2013, 135, 12228-12240.
  10. E. Leary, M. T. González, C. van der Pol, M. R. Bryce, S. Fillipone, N. Martín, G. Rubio-Bollinger, N. Agrait, Nano Lett. 2011, 11, 2236-2241.
  11. G. J. Ashwell, L. J. Phillips, B. J. Robinson, B. Urasinska-Wojcik, C. J. Lambert, I. M. Grace, M. R. Bryce, R. Jitchati, M. Tavasli, T. I. Cox, I. C. Sage, R. P. Tuffin, S. Ray, ACS Nano 2010, 4, 7401-7406.
  12. C. Wang, L.-O. Palsson, A. S. Batsanov, M. R. Bryce, J. Am. Chem. Soc. 2006, 128, 3789; L.-O. Pålsson, C. Wang, A. S. Batsanov, S. M. King, A. Beeby, A. P. Monkman, M. R. Bryce, Chem. Eur. J. 2010, 16, 1470-1479.
  13. M. Wielopolski, G. de Miguel Rojas, C. Van der Pol, L. Brinkhaus, G. Katsukis, M. R. Bryce, T. Clark, D. M. Guldi, ACS Nano 2010, 4, 6449-6462; C. Schubert, M. Wielopolski, L.-H. Mewes, G. de Miguel Rojas, C. Van der Pol, K. C. Moss, M. R. Bryce, J. E. Moser, T. Clark, D. M. Guldi, Chem. Eur. J. 2013, 19, 7575-7586.
  14. A. E. Smith, K. M. Clapham, A. S. Batsanov, M. R. Bryce, B. Tarbit, Eur. J. Org. Chem. 2008, 1458; L. M. Daykin, J. S. Siddle, A. L. Ankers, A. S. Batsanov, M. R. Bryce, Tetrahedron 2010, 66, 668-675.
  15. K. M. Clapham, A. S. Batsanov, R. D. R. Greenwood, M. R. Bryce, A. E. Smith, B. Tarbit, J. Org. Chem. 2008, 73, 2176-2181.
  16. R. Jitchati, A. S. Batsanov, M. R. Bryce, Tetrahedron 2009 65, 855-861; K. M. Clapham, A. S. Batsanov, M. R. Bryce, B. Tarbit, Org. Biomol. Chem. 2009, 7, 2155-2161.
  17. J. S. Siddle, A. S. Batsanov, M. R. Bryce, Eur. J. Org. Chem. 2008, 2746-2750.
  18. J. S. Siddle, A. S. Batsanov, S. T. Caldwell, G. Cooke, M. R. Bryce, Tetrahedron 2010, 66, 6138-6149.

Publications 2013-2000

Selected Publications

Conference Paper

Journal Article

Show all publications