We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Wolfson Research Institute for Health and Wellbeing

Wolfson Fellow

Publication details for Dr Mark Booth

McCreesh, N. & Booth, M. (2014). Effect of water temperature and population density on the population dynamics of Schistosoma mansoni intermediate host snails. Parasites & Vectors 7: 503.

Author(s) from Durham


Background: Mathematical models can be used to identify areas at risk of increased or new schistosomiasis transmission as a result of climate change. The results of these models can be very different when parameterised to different species of host snail, which have varying temperature preferences. Currently, the experimental data needed by these models are available for only a few species of snail. The choice of density-dependent functions can also affect model results, but the effects of increasing densities on Biomphalaria populations have only previously been investigated in artificial aquariums.

Methods: Laboratory experiments were conducted to estimate Biomphalaria sudanica mortality, fecundity and growth rates at ten different constant water temperatures, ranging from 13-
32°C. Snail cages were used to determine the effects of snail densities on B. sudanica and B. stanleyi mortality and fecundity rates in semi-natural conditions in Lake Albert.

Results: B. sudanica survival and fecundity were highest at 20°C and 22°C respectively. Growth in shell diameter was estimated to be highest at 23°C in small and medium sized snails, but the relationship between temperature and growth was not clear. The fecundity of both B. sudanica and B. stanleyi decreased by 72-75% with a four-fold increase in population
density. Increasing densities four-fold also doubled B. stanleyi mortality rates, but had no effect on the survival of B. sudanica.
Conclusions: The optimum temperature for fecundity was lower for B. sudanica than for previously studied species of Biomphalaria. In contrast to other Biomphalaria species, B. sudanica have a distinct peak temperature for survival, as opposed to a plateau of highly suitable temperatures. For both B. stanleyi and B. sudanica, fecundity decreased with increasing population densities. This means that snail populations may experience large fluctuations in numbers, even in the absence of any external factors such as seasonal temperature changes. Survival also decreased with increasing density for B. stanleyi, in contrast to B. sudanica and other studied Biomphalaria species where only fecundity has been shown to decrease.