Cookies

We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Music

People

Publication details for Professor Tuomas Eerola

Saari, P., Barthet, M., Fazekas, G., Eerola, T. & Sandler, M. (2013), Semantic Models of Mood Expressed by Music: Comparison between Crowd-sourced and Curated Editorial Annotations, 2013 IEEE International Conference on Multimedia and Expo (ICME 2013): International Workshop on Affective Analysis in Multimedia (AAM). San Jose, CA, IEEE, 1-6.

Author(s) from Durham

Abstract

Social media services such as Last.fm provide crowd-sourced mood tags which are a rich but often noisy source of information. In contrast, editorial annotations from production music libraries are meant to be incisive in nature. We compare the efficiency of these two data sources in capturing semantic information on mood expressed by music. First, a semantic computing technique devised for mood-related tags in large datasets is applied to Last.fm and I Like Music (ILM) corpora separately (250,000 tracks each). The resulting semantic estimates are then correlated with listener ratings of arousal, valence and tension. High correlations (Spearman's rho) are found between the track positions in the dimensional mood spaces and listener ratings using both data sources (0.60 <; rs <; 0.70). In addition, the use of curated editorial data provides a statistically significant improvement compared to crowd-sourced data for predicting moods perceived in music.