Cookies

We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Institute of Medieval and Early Modern Studies (IMEMS)

Staff and Governance

Core Staff

The day-to-day running of IMEMS is the responsibility of the Core Executive Committee, comprising the Director and Associate Directors and the Administrator. 

Publication details for Prof. James Baldini

Baldini, L.M., Baldini, J.U.L., McDermott, F., Arias, P., Cueto, M., Fairchild, I.J., Hoffmann, D.L., Mattey, D.P., Muller, W., Nita, D.C., Ontanon, R., Garcia-Monco, C. & Richards, D.A. (2019). North Iberian temperature and rainfall seasonality over the Younger Dryas and Holocene. Quaternary Science Reviews 226: 105998.

Author(s) from Durham

Abstract

Several stalagmite records have yielded important but discontinuous insights into northern Iberian climate since the Last Glacial. Here we present the first continuous Iberian stalagmite-based reconstruction of climate since the Bølling-Allerød interstadial, from a single stalagmite sample (GAR-01 from La Garma Cave, Cantabria). The ∼13.5 ka GAR-01 record provides the opportunity for replication, continuation, and aggregation of previously published records from northern Spain. The GAR-01 record reveals shifts in oxygen isotope ratios that are inexplicable by appealing to a single control (i.e., exclusively temperature, rainfall amount, etc.). Herein we explore the potential role of rainfall and temperature seasonality shifts on the new δ18O record using a simple Monte Carlo approach to estimate the seasonal distribution of rainfall and the annual temperature range at 100-year timeslices across the record. This model is corroborated by intervals of monthly-resolved laser ablation trace element data, providing glimpses into past Iberian seasonality shifts. The most salient features of the modelled results include extremely dry Younger Dryas winters (∼12.9–11.6 ka BP) and several intervals during the mid-Holocene with almost no summer rainfall (e.g., at 4.2 and 9.0 ka BP). By 1.6 ka BP, a near-modern rainfall seasonality was established. According to the modelling results, seasonal rainfall and temperature distribution variability can account for 95% of the record. The model presented here provides a new tool for extracting critical missing seasonality information from stalagmite δ18O records. Intervals where the model does not converge may represent transient climate anomalies with unusual origins that warrant further investigation.


Full Executive Committee

Our Full Executive Committee is made up of the Core Executive Committee, listed above, plus a number of executive members including:


International Advisory Board

We are extremely fortunate to have be able to call on the help and guidance of colleagues from around the world who help to shape and guide our direction, strategy and international reach. Our current Advisory Board members are: