We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Institute of Medieval and Early Modern Studies (IMEMS)


The list below shows Durham University research staff who are members of IMEMS. Click the member's name to see a more detailed biography and department.

We also welcome anyone from outside the University with an interest in our work to join. Membership is free of charge. You will receive invitations to our programme of events, with a weekly emails digest about what is happening in the Insitute and further afield. To join IMEMS contact:

Publication details for Prof Mark Allen

Holt, P.J., Allen, M.B. & van Hunen, J. (2015). Basin formation by thermal subsidence of accretionary orogens. Tectonophysics 639: 132-143.

Author(s) from Durham


Subsidence patterns of 18 stratigraphic sections from five sedimentary basins around the world are analysed by forward and inverse modelling, in order to explain the mechanisms by which basins form on the juvenile crust generated by accretionary orogens. Study areas are the Paraná Basin (Brazil), Karoo Basin and Cape Fold Belt (South Africa), the Arabian Platform, Scythian and Turan platforms (Central Asia) and eastern Australia. The form of the tectonic subsidence curves derived from backstripping analysis is consistent with results from a forward model, which produces thermal subsidence of crust with normal thickness (~ 35 km) but low initial mantle lithosphere thickness. This high thickness ratio of crust:mantle lithosphere is the plausible initial configuration of lithosphere produced by accretionary tectonics. Our results do not require late stage orogenic extension or lithosphere delamination as a precursor to the thermal subsidence phase.