Cookies

We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Department of Earth Sciences

Profile

Publication details for Dr Darren R. Gröcke

Gröcke, D. R., Ludvigson, G. A., Witzke, B. L., Robinson, S. A., Joeckel, R. M., Ufnar, D. F. & Ravn, R. L. (2006). Recognizing the Albian-Cenomanian (OAE1d) sequence boundary using plant carbon isotopes: Dakota Formation, Western Interior Basin, USA. Geology 34(3): 193-196.

Author(s) from Durham

Abstract

Analysis of bulk sedimentary organic matter and charcoal from an Albian-Cenomanian fluvial-estuarine succession (Dakota Formation) at Rose Creek Pit (RCP), Nebraska, reveals a negative excursion of ∼3‰ in late Albian strata. Overlying Cenomanian strata have δ13C values of −24‰ to −23‰ that are similar to pre-excursion values. The absence of an intervening positive excursion (as exists in marine records of the Albian-Cenomanian boundary) likely results from a depositional hiatus. The corresponding positive δ13C event and proposed depositional hiatus are concordant with a regionally identified sequence boundary in the Dakota Formation (D2), as well as a major regressive phase throughout the globe at the Albian-Cenomanian boundary. Data from RCP confirm suggestions that some positive carbon-isotope excursions in the geologic record are coincident with regressive sea-level phases. We estimate using isotopic correlation that the D2 sequence boundary at RCP was on the order of 0.5 m.y. in duration. Therefore, interpretations of isotopic events and associated environmental phenomena, such as oceanic anoxic events, in the shallow-marine and terrestrial record may be influenced by stratigraphic incompleteness. Further investigation of terrestrial δ13C records may be useful in recognizing and constraining sea-level changes in the geologic record.