Cookies

We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Department of Earth Sciences

Profile

Publication details for Professor M E Tucker

Perri, E. & Tucker, M.E. (2007). Bacterial fossils and microbial dolomite in Triassic stromatolites. Geology 35(3): 207-210.

Author(s) from Durham

Abstract

Triassic stromatolitic dolomite from Italy preserves mineralized bacterial remains, one of the first unequivocal identifications of such structures in the geological record. They consist of empty spheroids 1.0 m diameter resembling coccoid bacteria, and smaller, 150 400 nm, objects interpreted as dwarf bacterial forms, occurring within and between syn-sedimentary dolomite crystals. Moreover, gently folded sheets, 100 200 nm thick and several micrometers long, form a sub-polygonal network reminiscent of EPS (extracellular polymeric substance). Their granular-textured surfaces suggest bacterial degradation of original organic matter. These features confirm a biological origin for the stromatolites, as in modern microbial mats, and the preserved original geochemical signatures indicate early precipitation of Mg-carbonates induced through microbial sulfate-reducing metabolic activities.

References

Allwood, A.C., Walter, M.R., Kamber, B.S., Marshall, C.P., and Burch, I.W., 2006, Stromatolite reef from the Early Archaean era of
Australia: Nature, v. 441, p. 714 718, doi:
10.1038/nature04764.
Andres, M.S., Sumner, D.Y., and Swart, P.K., 2006, Isotopic fi ngerprints of microbial respiration in aragonite from Bahamian stromatolites: Geology, v. 34, p. 973 976.
Arp, G., Reimer, A., and Reitner, J., 2003, Microbialite formation in seawater of increased alkalinity, Satonda Crater Lake, Indonesia: Journal of Sedimentary Research, v. 73, p. 105 127.
Brasier, M., McLoughlin, N., Green, O., and Wacey, D., 2006, A fresh look at the fossil evidence for early Archaean cellular life: Philosophical Transactions of the Royal Society B, v. 361, p. 887 902.
Camoin, G.F., Gautret, P., Montaggioni, L.F., and Cabioch, G., 1999, Nature and environmental signifi cance of microbialites in Quaternary
reefs: The Tahiti paradox: Sedimentary Geology, v. 126, p. 271 304, doi: 10.1016/S0037- 0738(99)00045-7.
D馡rge, C., Trichet, J., Jaunet, A.M., Michel, R., Tribble, J., and Sansone, F.J., 1996, Texture of microbial sediments revealed by cryo-scanning electron microscopy: Journal of Sedimentary Research, v. 66, p. 935 947.
Dupraz, C., Visscher, P.T., Baumgartner, L.K., and Reid, R.P., 2004, Microbe-mineral interactions:
early carbonate precipitation in a hypersaline lake (Eleuthera Island, Bahamas): Sedimentology, v. 51, p. 745 765, doi: 10.1111/j.1365- 3091.2004.00649.x.
Folk, R.L., 1999, Nannobacteria and the precipitation of carbonate in unusual environments:
Sedimentary Geology, v. 126, p. 47 55, doi:
10.1016/S0037-0738(99)00031-7.
Gautret, P., Camoin, G., Golubic, S., and Sprachta, S., 2004, Tracing automicrite formation and its biochemical setting in modern lagoonal microbialites:
Journal of Sedimentary Research,
v. 74, p. 462 478.
Maniloff, J., 1997, Nannobacteria: Size limits and
evidence: Science, v. 276, p. 1776, doi: 10.1126/ science.276.5320.1773e.
Mastandrea, A., Perri, E., Russo, F., Spadafora, A., and Tucker, M.E., 2006, Microbial primary dolomite from a Norian carbonate platform, northern Calabria, southern Italy: Sedimentology, v. 53, p. 465 480, doi: 10.1111/j.1365- 3091.2006.00776.x.
Nealson, K.H., 1997, Nannobacteria: Size limits and
evidence: Science, v. 276, p. 1776.
Perri, E., Mastandrea, A., Neri, C., and Russo, F., 2003, A micrite-dominated Norian carbonate platform from Northern Calabria (Southern
Italy): Facies, v. 49, p. 101 118.
Pope, M., Grotzinger, J.P., and Schreiber, B.C., 2000, Evaporitic subtidal stromatolites produced by in situ precipitation: Textures, facies association, and temporal signifi cance: Journal of Sedimentary Research, v. 70, p. 1139 1151.
Riding, R., 2000, Microbial carbonates: The geological record of calcifi ed bacterial-algal mats and biofi lms: Sedimentology, v. 47, Suppl. 1, p. 179 214, doi: 10.1046/j.1365-3091.2000.00003.x.
Schieber, J., and Arnott, H.J., 2003, Nannobacteria as a byproduct of enzyme-driven tissue decay:
Geology, v. 31, p. 717 720, doi: 10.1130/ G19663.1.
Sommer, A.P., Pretorius, A.M., Kajander, E.O., and Oron, U., 2004, Biomineralization induced by stressed nanobacteria: Crystal Growth & Design, v. 4, p. 45 46, doi: 10.1021/cg034121x.
Southam, G., and Donald, R., 1999, A structural comparison of bacterial microfossils vs.
nanobacteria and nanofossils: Earth Science Reviews, v. 48, p. 251 264, doi: 10.1016/ S0012-8252(99)00057-4.
Sprachta, S., Camoin, G., Golubic, S., and Le Campion, Th., 2001, Microbialites in a modern lagoonal environment: Nature and distribution (Tikehau atoll, French Polynesia): Palaeogeography, Palaeoclimatology, Palaeoecology, v. 175, p. 103 124, doi: 10.1016/S0031- 0182(01)00388-1.
Stolz, J.F., Feinstein, T.N., Salsi, J., Visscher, P.T., and Reid, R.P., 2001, TEM analysis of microbial mediated sedimentation and lithifi cation in modern marine stromatolites: The American Mineralogist, v. 86, p. 826 833.
Trichet, J., D馡rge, C., Tribble, J., Tribble, G., and Sansone, F., 2001, Christmas Islands lagoonal
lakes: Models for the deposition of carbonateevaporite- organic laminated sediments: Sedimentary Geology, v. 140, p. 177 189, doi:
10.1016/S0037-0738(00)00177-9.
van Lith, Y., Warthmann, R., Vasconcelos, C., and McKenzie, J.A., 2003a, Sulfate-reducing bacteria induce low-temperature Ca-dolomite and high Mg-calcite formation: Geobiology, v. 1, p. 71 79, doi: 10.1046/j.1472-4669.2003.
00003.x.
van Lith, Y., Warthmann, R., Vasconcelos, C., and McKenzie, J.A., 2003b, Microbial fossilization in carbonate sediments: A result of the bac terial surface involvement in dolomite precipitation:
Sedimentology, v. 50, p. 237 245, doi: 10.1046/ j.1365-3091.2003.00550.x.
Vasconcelos, C., McKenzie, J.A., Bernasconi, S., Grujic, D., and Tien, A.J., 1995, Microbial mediation as a possible mechanism for dolomite
formation: Nature, v. 377, p. 220 222,
doi: 10.1038/377220a0.
Vasconcelos, C., Warthmann, R., McKenzie, J.A., Visscher, P.T., Bittermann, A.G., and van Lith, Y., 2006, Lithifyng microbial mats in Lagoa Vermelha, Brazil: Modern Precambrian relics?:
Sedimentary Geology, v. 185, p. 175 183, doi:
10.1016/j.sedgeo.2005.12.022.
Veizer, J., Bruckschen, P., Pawellek, F., Diener, A., Podlaha, O.G., Carden, G.A.F., Jasper, T., Korte, C., Strauss, H., Azmy, K., and Ala, D., 1997, Oxygen isotope evolution of Phanerozoic
seawater: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 132, p. 159 172, doi:
10.1016/S0031-0182(97)00052-7.
Visscher, P.T., and Stolz, J.F., 2005, Microbial mats as bioreactors: Populations, process, and products:
Palaeogeography, Palaeoclimatology, Palaeoecology, v. 219, p. 87 100, doi: 10.1016/ j.palaeo.2004.10.016.
Vreeland, R.H., Rosenzweig, W.D., and Powers, D., 2000, Isolation of a 250-million-yearold halotolerant bacterium from a primary salt crystal: Nature, v. 407, p. 897 900, doi:
10.1038/35038060.
Wright, D.T., and Wacey, D., 2005, Precipitation of dolomite using sulfate-reducing bacteria from the Coorong Region, South Australia:
Signifi cance and implication: Sedimentology, v. 52, p. 987 1008, doi: 10.1111/j.1365- 3091.2005.00732.x.