We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Department of Earth Sciences


Publication details for Professor M E Tucker

Chen, D & Tucker, M.E (2003). The Frasnian-Famennian mass extinction: insights from high-resolution sequence stratigraphy and cyclostratigraphy in South China. Palaeogeography, Palaeoclimatology, Palaeoecology 193(1): 87-111.

Author(s) from Durham


Two sequences (SFr, SFa), each 1-1.2 Myr in duration, are recognised in the strata across the Frasnian-Famennian (F-F) transition both in carbonate platform and interplatform basinal successions in South China. The sequence boundary between the two sequences is placed a little below the top of the Frasnian. The sequences are basically composed of coarsening-upward/bed-thickness increasing-upward cycles and shallowing-upward cycles (parasequences) in basinal and platform deposits respectively, which stack into cycle-sets (typically six to eight cycles). 10 and 12 cycle-sets are identified in sequences SFr and SFa respectively. These cycle-sets can be further grouped into larger-scale composite cycle-sets (herein termed mesocycle- and megacycle-sets with two and four cycle-sets respectively). This vertical cycle-stacking pattern and the hierarchy of cyclicity suggest a Milankovitch style of forcing such that the cycles and cycle-sets were formed in response to the orbital perturbations of precession (16-18 kyr) and eccentricity (100 kyr in duration), respectively. In the basinal cycles, smaller-scale rhythmic stratification beds (typically six to eight beds in a cycle) are extensive, and were likely caused by millennial-scale climatic forcing. In the lower sequence, SFr, the latest highstand deposits consist of calciturbidites and debrites in deep-water strata and fenestral limestones in shallow-water strata, representing a major (third-order) sea-level fall. Within these deposits, four cycle-sets are further identified in both coeval deep-water and platform successions. Succeeding deeper-water organic-rich facies, within which three cycles occur, are the transgressive deposits of the overlying Famennian sequence (SFa). These cycles represent three higher-frequency (16-18 kyr) sea-level fluctuations and accompanying anoxia, superimposed on a major third-order sea-level rise. The F-F boundary is placed at the top of the first cycle, based on conodont data. Thus, a major sea-level fall and then a rise occurred in the F�F transitional period. Faunal and sedimentological data reveal a massive biotic decline in concert with the major sea-level fall, and a further biotic demise coinciding with the major sea-level rise and its three superimposed higher-frequency sea-level fluctuations and accompanying anoxia. The F-F biotic crisis was therefore characterised by two episodes of step-down extinction. On the basis of Milankovitch orbital rhythms, the first major biotic extinction took place over 400 kyr, and the subsequent event was 50 kyr in duration, i.e. 450 kyr for the entire event. At the same time as the massive decline of normal-marine fossils during the latest Frasnian sea-level fall, there was widespread cyanobacterial growth and a thriving of planktonic calcispheres, suggesting eutrophic conditions. This situation could have caused a severe biotic loss, as a result of the deterioration of surface water clarity and formation of anoxic bottom waters due to over-consumption of oxygen through respiratory demands and decomposition by the cyanobacteria and phytoplankton. The subsequent rapid sea-level rise with superimposed higher-frequency sea-level fluctuations and accompanying anoxia could have caused rapid elevation of anoxic bottom waters and expansion of eutrophic surface waters over shallow-water platforms due to enhanced upwelling ocean currents and improved ocean circulation. This situation would have exerted further stresses upon the already-weakened biota, leading to a further biotic demise. However, a small number of organisms such as pelagic tentaculitids, small mud-adapted brachiopods and gastropods did survive into the Famennian, although with very low diversity.


Algeo, T.J., Berner, R.A., Maynard, J.B., Scheckler, S.E.,
1995. Late Devonian oceanic anoxic events and biotic crises:
�rooted� in the evolution of vascular land plants? GSA Today
5, 63^66.
Algeo, T.J., Stephen, E., Scheckler, E., 1998. Terrestrial-marine
teleconnections in the Devonian: links between the evolution
of land plants, weathering processes, and marine anoxic
events. Philos. Trans. R. Soc. London B 353, 113^130.
Arthur, M.A., Dean, W.E., Stow, D.A.V., 1984. Models for
the deposition of Mesozoic^Cenozoic �ne-grained organiccarbon-
rich sediment in the deep sea. In: Stow, D.A.V.,
Piper, D.J.W. (Eds.), Fine-Grained Sediments: Deep-Water
Processes and Facies. Geol. Soc. London Spec. Publ. 15,
Arthur, M.A., Walter, E.D., Pratt, L.S., 1988. Geochemical
and climatic e�ects of increased marine organic carbon burial
at the Cenomanian/Turonian boundary. Nature 335, 714^
Berger, A., 1978. Long-term variations of caloric insolation
resulting from the Earth�s orbital elements. Quat. Res. 9,
Berger, A., Loutre, M.F., 1994. Astronomical forcing through
geological time. In: De Boer, P.L., Smith, D.G. (Eds.), Orbital
Forcing and Cyclic Sequences. Int. Ass. Sediment.
Spec. Publ. 19, 15^24.
Berger, A., Loutre, M.E., Laskar, J., 1992. Stability of the
astronomical frequencies over the Earth�s history for paleoclimate
studies. Science 255, 560^566.
Brenchley, P.J., Marshall, J.D., Carden, G.A.F., Robertson,
D.B.R., Long, D.G.F., Meidla, T., Hints, L., Anderson,
T.F., 1994. Bathymetric and isotopic evidence for short-lived
Late Ordovician glaciation in a greenhouse period. Geology
22, 295^298.
Chen, D., Tucker, M.E., Zhu, J., Jiang, M., 2001a. Carbonate
sedimentation in a starved pull-apart basin, Middle to Late
Devonian, southern Guilin, South China. Basin Res. 13,
Chen, D., Tucker, M.E., Jiang, M., Zhu, J., 2001b. Long-distance
correlation between tectonic-controlled, isolated carbonate
platforms by cyclostratigraphy and sequence stratigraphy
in the Devonian of South China. Sedimentology 48,
Chen, D., Tucker, M.E., Zhu, J., Jiang, M., 2002a. Carbonate
platform evolution: from a bioconstructed platform margin
to a sand-shoal system (Devonian, Guilin, South China).
Sedimentology 49, 737^764.
Chen, D., Tucker, M.E., Shen, Y., Yans, J., Pre�at, A., 2002b.
Carbon isotope excursions and sea-level change: implications
for the Frasnian^Famennian biotic crisis. J. Geol.
Soc. London 159, 623^626.
Claeys, P., Casier, J.G., Margolis, S.V., 1992. Microtektites
and mass extinctions: evidence for a Late Devonian asteroid
impact. Science 257, 1102^1104.
Clemens, S.C., Tiedemann, R., 1997. Eccentricity forcing of
Pliocene^early Pleistocene climate revealed in a marine oxygen-
isotope record. Nature 385, 801^804.
Copper, P., 1986. Frasnian/Famennian mass extinction and
cold-water oceans. Geology 14, 835^839.
Copper, P., 1994. Ancient reef ecosystem expansion and collapse.
Coral Reefs 13, 3^11.
Elrick, M., 1995. Cyclostratigraphy of Middle Devonian carbonates
of the eastern Great Basin. J. Sediment. Res. B65,
Elrick, M., Hinnov, L.A., 1996. Millennial-scale climatic origins
for strati�cation in Cambrian and Devonian deep-water
rhythmites, western USA. Palaeogeogr. Palaeoclimatol. Palaeoecol.
123, 353^372.
Elrick, M., Read, J.F., Coruh, C., 1991. Short-term paleoclimatic
�uctuations expressed in Lower Mississippian rampslope
deposits, southwestern Montana. Geology 19, 799^
Enos, P., 1991. Sedimentary parameters for computer modelling.
In: Franseen, E.K., Watney, W.L., Kendall, C.G.St.C.,
Ross, W. (Eds.), Sedimentary Modelling: Computer Simulations
and Methods for Improved Parameter De�nition.
Kans. Geol. Surv. Bull. 233, 63^100.
Feldmann, M., McKenzie, J.A., 1997. Messinian stromatolitethrombolite
associations, Santa Pola, SESpain : an analogue
for the Palaeozoic? Sedimentology 44, 893^914.
France-Lanord, C., Derry, L.A., 1997. Organic carbon burial
forcing of the carbon cycle from Himalayan erosion. Nature
390, 65^67.
GMRBG (Geology and Mineral Resource Bureau of Guangxi),
1994. Report for the regional geological investigations
and mapping in Guilin-Yangshuo area (scale: 1/50,000), irregular
publication, 79 pp. (in Chinese).
Goldhammer, R.K., 1997. Compaction and decompaction algorithms
for sedimentary carbonates. J. Sediment. Res. 67,
Goldhammer, R.K., Dunn, P.A., Hardie, L.A., 1990. Depositional
cycles, composite sea-level changes, cycle stacking patterns,
and the hierarchy of stratigraphic forcing: Examples
from platform carbonates of the Alpine Triassic. Geol. Soc.
Am. Bull. 102, 535^562.
Goldhammer, R.K., Lehmann, P.J., Dunn, P.A., 1993. The
origin of high-frequency platform carbonate cycles and
third-order sequences (Lower Ordovician El Paso Group,
West Texas): Constraints from outcrop data and stratigraphic
modeling. J. Sediment. Res. 63, 318^359.
Gong, Y.-M., Li, B.-H., Wang, C.-Y., Wu, Y., 2001. Orbital
cyclostratigraphy of the Devonian Frasnian^Famennian
transition in South China. Palaeogeogr. Palaeoclimatol. Palaeoecol.
168, 237^248.
Gro�cke, D.R., Hesselbo, S.P., Jenkyns, H.C., 1999. Carbonisotope
composition of Lower Cretaceous fossil wood:
ocean-atmosphere chemistry and relation to sea-level
change. Geology 27, 155^158.
Hallock, P., 1987. Fluctuations in the trophic resource continuum:
A factor in global diversity cycles? Paleoceanography
2, 457^471.
Hallock, P., Schlager, W., 1986. Nutrient excess and the demise
of coral reefs and carbonate platforms. Palaios 1, 389^
Hine, A.C., Locker, S.D., Tedesco, L.P., Mullins, H.T., Hallock,
P., Belknap, D.F., Gonzales, J.L., 1992. Megabreccia
shedding from modern low-relief carbonate platforms, Nicaraguan
Rise. Geol. Soc. Am. Bull. 104, 928^943.
Hou, H.F., Ji, Q., Wang, J.X., 1988. Preliminary report on
Frasnian^Famennian events in South China. In: McMillan,
N.J., Embry, A.F., Glass, D.J. (Eds.), Devonian of the
World III. Can. Soc. Petrol. Geol. Mem. 14, 63^69.
House, M.R., Menner, V.V., Becker, R.T., Klapper, G., Ovnatanova,
N.S., Kuz�min, V., 2000. Reef episodes, anoxia
and sea-level changes in the Frasnian of the southern Timan
(NERussian platform). In: Insalaco, E., Skelton, P.W.,
Palmer, T.J. (Eds.), Carbonate Platform Systems: Components
and Interactions. Geol. Soc. London Spec. Publ. 178,
House, M.R., Ziegler, W., 1997. On sea-level �uctuations in
the Devonian. Cour. Forsch.inst. Senckenberg 199, 1^146.
Ji, Q., 1991. Conodont biostratigraphy and the mass-extinction
event near the Frasnian^Famennian boundary in South China
(in Chinese with English abstract). Bull. Chin. Acad.
Geol. Sci. 23, 115^127.
Jia, H.C., Xian, S.Y., Yang, D.L., Zhou, H.L., Han, Y.J.,
Chen, Z.H., Wang, J.X., Wang, R.G., Wang, S.T., Zhang,
Z.X., Wei, M., 1988. An ideal Frasnian/Famennian boundary
in Ma-Anshan, Zhongping, Xiangzhou, Guangxi, South
China. In: McMillan, N.J., Embry, A.F., Glass, D.J. (Eds.),
Devonian of the World III. Can. Soc. Petrol. Geol. Mem.
14, 79^92.
Joachimski, M.M., Buggisch, W., 1993. Anoxic events in the
late Frasnian ^ Cause of the Frasnian^Famennian faunal
crisis? Geology 21, 675^678.
Joachimski, M.M., Buggisch, W., 1996. The Upper Devonian
reef crisis ^ insights from the carbon isotope record. Go� tt.
Arb. Pala�ontol. Sb2, 365^370.
Joachimski, M.M., Buggisch, W., 2002. Conodont apatite N18O
signatures indicate climatic cooling as a trigger of the Late
Devonian mass extinction. Geology 30, 711^714.
Joachimski, M.M., Ostertag-Henning, C., Pancost, R.D.,
Strauss, H., Freeman, K.H., Littke, R., Sinninghe Damste�,
J.S., Racki, G., 2001. Water column anoxia, enhanced productivity
and concomitant changes in N13C and N34S across
the Frasnian^Famennian boundary (Kowala-Holy Mountains/
Poland). Chem. Geol. 175, 109^131.
Johnson, J.G., Klapper, G., Sandberg, C.A., 1985. Devonian
eustatic �uctuations in Euramerica. Geol. Soc. Am. Bull. 96,
Kammer, T.W., Brett, C.E., Boardman, D.R., Mapes, R.H.,
1986. Ecological stability of the dysaerobic biofacies during
the Late Palaeozoic. Lethaia 19, 109^121.
Kaufman, A.J., Jacobsen, S.B., Knoll, A.H., 1993. The Vendian
record of Sr and C isotopic variations in seawater:
Implications for tectonics and palaeoclimate. Earth Planet.
Sci. Lett. 120, 409^430.
Kaz�mierczak, J., 1976. Volvocaean nature of some Palaeozoic
non-radiosphaerid calcispheres and parathuramminid �Foraminifera�.
Acta Palaeontol. Pol. 21, 243^258.
Kaz�mierczak, J., Kremer, B., 2001. Early diagenetic calci�ed
Devonian acritachs: A source of calcispheric structures. In:
21st IAS Meeting of Sedimentology, Abstract, Davos,
p. 176.
Kuang, G., Zhao, M., Tao, Y., 1989. The Standard Devonian
Section of China: Liujing Section of Guangxi. China University
of Geoscience Press, Wuhan, 155 pp. (in Chinese
with English summary).
Lehrmann, D.J., Goldhammer, R.K., 1999. Secular variation
in parasequence and facies stacking patterns of platform
carbonates: a guide to application of stacking pattern analysis
in strata of diverse ages and settings. In: Harris, P.M.,
Saller, A.H., Simo, J.A. (Eds.), Advances in Carbonate Sequence
Stratigraphy: Application to Reservoirs, Outcrops
and Models. SEPM (Soc. Sediment. Geol.) Spec. Publ. 63,
Li, Y.X., 1995. Tentaculitids of the Famennian in Luofu,
Guangxi ^ relics of the F^F extinction event. J. Guilin
Techn. Inst. 15, 157^170.
Liao, W.H., 2001. F^F biotic mass extinction and recovery in
the Late Devonian, China (in Chinese). Sci. China (Ser. D)
31, 663^667.
Ma, X.P., Bai, S.L., 2002. Biological, depositional, microspherule
and geochemical records of the Frasnian/Famennian
boundary beds, South China. Palaeogeogr. Palaeoclimatol.
Palaeoecol. 181, 325^346.
Martin, R., 1996. Secular increase in nutrient levels through
the Phanerozoic: Implications for productivity, biomass and
diversity of the marine biosphere. Palaios 11, 209^219.
McGhee, G.R., 1989. The Frasnian^Famennian extinction
event. In: Donovan, S.K. (Ed.), Mass Extinction: Processes
and Evidence. Belhaven Press, London, pp. 133^151.
McGhee, G.R., 1996. The Late Devonian mass extinction ^
the Frasnian/Famennian crisis. In: Critical Moments in Paleobiology
and Earth History Series. Columbia University
Press, New York, 303 pp.
Mountjoy, E.W., Becker, S., 2000. Frasnian to Famennian sealevel
changes and the Sassenach Formation, Jasper Basin,
Alberta Rocky Mountains. In: Homewood, P.W., Eberli,
G.P. (Eds.), Genetic Stratigraphy on Exploration and Pro-duction Scales ^ Case Studies from the Pennsylvanian of the
Paradox Basin and the Upper Devonian of Alberta. Bull.
Centre Rech. Elf Explor. Prod. Mem. 24, 181^201.
Muchez, P., Boulvain, F., Dreesen, R., Hou, H.F., 1996. Sequence
stratigraphy of the Frasnian^Famennian transitional
strata: a comparison between South China and southern
Belgium. Palaeogeogr. Palaeoclimatol. Palaeoecol. 123,
Murphy, A.E., Sageman, B.B., Hollander, D.J., 2000. Eutrophication
by decoupling of the marine biogeochemical cycles
of C, N, and P: A mechanism for the Late Devonian mass
extinction. Geology 28, 427^430.
Neuweiler, F., Gautret, P., Thiel, H., Langes, R., Michaelis,
W., Reitner, J., 1999. Petrology of Lower Cretaceous carbonate
mud mounds (Albian, N. Spain): insights into organomineralic
deposits of the geological record. Sedimentology
46, 837^859.
Oliver, W.A., Pedder, A.E.H., 1994. Crises in the Devonian
history of the rugose corals. Paleobiology 20, 178^190.
Olsen, P.E., Kent, D.V., 1999. Long-period Milankovitch
cycles from the Late Triassic and Early Jurassic of eastern
North America and their implications for the calibration of
the early Mesozoic time-scale and the long-term behaviour
of the planets. Philos. Trans. R. Soc. London (Ser. A) 357,
Over, D.J., 1997. Conodont biostratigraphy of the Java Formation
and the Frasnian^Famennian boundary in western
New York State. In: Klapper, G.K., Murphy, M.A., Talent,
J.A. (Eds.), Paleozoic Sequence Stratigraphy, Biostratigraphy
and Biogeography: Studies in Honour of J. Granville
(�Jess�) Johnson. Geol. Soc. Am. Spec. Paper 321, 161^
Preto, N., Hinnov, L.A., Hardie, L.A., Zanche, V.D., 2001.
Middle Triassic orbital signature recorded in the shallowmarine
Latemar carbonate buildup (Dolomites, Italy). Geology
29, 1123^1126.
Qing, H., Veizer, J., 1994. Oxygen and carbon isotopic composition
of Ordovician brachiopods: Implications for coeval
seawater. Geochim. Cosmochim. Acta 58, 4429^4442.
Racki, G., Racka, M., Matyja, H., Devleeschouwer, X., 2002.
The Frasnian/Famennian boundary interval in the South
Polish-Moravian shelf basins: integrated event-stratigraphical
approach. Palaeogeogr. Palaeoclimatol. Palaeoecol. 181,
Read, J.F., Goldhammer, R.K., 1988. Use of Fischer plots to
de�ne third-order sea-level curves in peritidal cyclic carbonates,
Early Ordovician, Appalachians. Geology 16, 895^899.
Rial, J., 1999. Pace-making the ice ages by frequency modulation
of the Earth�s orbital eccentricity. Science 285, 564^
Riding, R., 2000. Microbial carbonates: the geological record
of calci�ed bacterial-algal mats and bio�lms. Sedimentology
47 (Suppl. 1), 179^214.
Sadler, J.F., Osleger, D.A., Montan� ez, I.P., 1993. On the labelling,
length and objective basis of Fischer plots. J. Sediment.
Petrol. B66, 307^323.
Sandberg, C.A., Ziegler, W., 1996. Devonian conodont biochronology
in geologic time calibration. Senckenb. Lethaea
76, 263^307.
Sandberg, C.A., Ziegler, W., Dressen, R., Butler, J.L., 1988.
Late Devonian mass extinction: Conodont event stratigraphy,
global changes and possible causes. Cour. Forsch.inst.
Senckenberg 102, 263^307.
Schlager, W., Reijmer, J.J.G., Droxler, A., 1994. Highstand
shedding of carbonate platforms. J. Sediment. Res. B64,
Scotese, C.R., McKerrow, W.S., 1990. Revised world maps
and introduction. In: McKerrow, W.S., Scotese, C.R.
(Eds.), Palaeozoic Palaeogeography and Biogeography.
Geol. Soc. London Mem. 12, 1^21.
Scrutton, C.T., 1964. Periodicity in Devonian coral growth.
Palaeontology 7, 552^558.
Sepkoski, J.J., 1986. Phanerozoic overview of mass extinctions.
In: Raup, D.M., Jablonski, D. (Eds.), Patterns and Processes
in the History of Life. Springer, Berlin, pp. 277^295.
Sorauf, J.E., Pedder, A.E.H., 1986. Late Devonian rugose corals
and the Frasnian^Famennian crisis. Can. J. Earth Sci.
23, 1265^1287.
Spence, G.H., Tucker, M.E., 1997. Genesis of limestone megabreccias
and their signi�cance in carbonate sequence stratigraphic
models: a review. Sediment. Geol. 112, 163^193.
Streel, M., Caputo, M.V., Loboziak, S., Melo, J.H.G., 1998.
Late Frasnian^Famennian climates based on palynomorph
analyses and the question of the Late Devonian glaciations.
Earth Sci. Rev. 52, 121^173.
Tucker, M.E., 1974. Sedimentology of Palaeozoic pelagic limestones:
the Devonian Griotte (Southern France) and Cephalopodenkalk
(Germany): In: Hsu� , K.J., Jenkyns, H.C.
(Eds.), Pelagic Sediments on Land and Under the Sea. Int.
Ass. Sediment. Spec. Publ. 1, 71^79.
Vail, P.R., Mitchum, R.M.J., Todd, R.G., Widmier, J.W.,
Thompson, S., Sangree, J.B., Bubb, J.N., Hatlelid, W.G.,
1977. Seismic stratigraphy and global changes of sea level.
In: Payton, C.E. (Ed.), Seismic Stratigraphy-Application to
Hydrocarbon Exploration. Am. Assoc. Petrol. Geol. Mem.
26, 49^212.
Van Buchem, F.S.P., Eberli, G.P., Whalen, M.T., Mountjoy,
E.W., Homewood, P.W., 1996. The basinal geochemical signature
and platform-margin geometries in the Upper Devonian
mixed carbonate-siliciclastic system of Western Canada.
Bull. Soc. Geol. France 167, 685^699.
Van Wagoner, J.C., Posamentier, H.W., Mitchum, R.M. Jr.,
Vail, P.R., Sarg, J.F., Loutit, T.S., Hardenbol, J., 1988. An
overview of the fundamentals of sequence stratigraphy and
key de�nitions. In: Wilgus, C.K., Hastings, B.S., Kendal,
C.G.St.C., Posamentier, H.W., Ross, C.A., Van Wagoner,
J.C. (Eds.), Sea-Level Changes: An Integrated Approach.
Soc. Econ. Paleontol. Miner. Spec. Publ. 42, 39^45.
Veizer, J., Buhl, D., Diener, A., Ebneth, S., Podlaha, O.G.,
Bruckschen, P., Jasper, T., Korte, C., Schaaf, M., Ala, D.,
Azmy, K., 1997. Strontium isotope stratigraphy: potential
resolution and event correlation. Palaeogeogr. Palaeoclimatol.
Palaeocol. 132, 65^77.
Wang, C.Y., Ziegler, W., 1983. Devonian conodont biostratig-raphy of Guangxi, South China, and correlation with Europe.
Geol. Paleontol. 17, 75^107.
Wang, K., Orth, C.J., Attrep, M., Chatterton, B.D., Hou, H.,
Geldsetzer, H.H.J., 1991. Geochemical evidence for a catastrophic
biotic event at the Frasnian/Famennian boundary
in South China. Geology 19, 776^779.
Wang, K., Geldsetzer, H.H.J., Goodfellow, W.D., Krouse,
H.R., 1996. Carbon and sulfur isotope anomalies across
the Frasnian^Famennian extinction boundary, Alberta,
Canada. Geology 24, 187^189.
Wells, J.W., 1962. Coral growth and geochronometry. Nature
197, 948.
Yan, Z., Hou, H.-F., Ye, L.-F., 1993. Carbon and oxygen
isotope event markers near the Frasnian^Famennian boundary,
Luoxiu section, South China. Palaeogeogr. Palaeoclimatol.
Palaeoecol. 104, 97^104.
Zhong, G., Wu, Y., Yin, B.A., Liang, Y.L., Yao, Z.G., Peng,
J.L., 1992. Devonian of Guangxi. China University of Geosciences
Press, Wuhan, 384 pp. (in Chinese).