Cookies

We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Department of Earth Sciences

Profile

Publication details for Professor Robert Holdsworth

Collettini, C. & Holdsworth, R.E. (2004). Fault zone weakening and character of slip along low-angle normal faults: insights from the Zuccale fault, Elba, Italy. Journal of the Geological Society 161(6): 1039-1051.

Author(s) from Durham

Abstract

A seismically active low-angle normal fault is recognized at depth in the Northern Apennines, Italy, where recent exhumation has also exposed ancient examples at the surface, notably the Zuccale fault on Elba. Field-based and microstructural studies of the Zuccale fault reveal that an initial phase of pervasive cataclasis increased fault zone permeability, promoting influx of CO2-rich hydrous fluids. This triggered low-grade alteration and the onset of stress-induced dissolution–precipitation processes (e.g. pressure solution) as the dominant grain-scale deformation process in the pre-existing cataclasites leading to shear localization and the formation of a narrow foliated fault core dominated by fine-grained hydrous mineral phases. These rocks exhibit ductile deformation textures very similar to those formed during pressure-solution-accommodated ‘frictional–viscous’ creep in experimental fault rock analogues. The presence of multiple hydrofracture sets also points to the local attainment of fluid overpressures following development of the foliated fault core, which significantly enhanced the sealing capacity of the fault zone. A slip model for low-angle normal faults in the Apennines is proposed in which aseismic frictional–viscous creep occurs on a weak, slow-moving (slip rate <1 mm a-1) fault, interspersed with small seismic ruptures caused by cyclic hydrofracturing events. Our findings are potentially applicable to other examples of low-angle normal faults in many tectonic settings.

References

Barchi, R.M., Minelli, G. & Pialli, G. 1998. The crop 03 profile: a synthesis of
results on deep structures of the Northern Apennines. Memorie della Societa`
Geologica Italiana, 52, 383–400.
Barchi, M.R., Galadini, F. & Lavecchia, G. et al. 2000. Sintesi sulle
conoscenze delle faglie attive in Italia Centrale. Gruppo Nazionale per la
Difesa dei Terremoti, Rome.
Boncio, P., Brozzetti, F. & Lavecchia, G. 2000. Architecture and seismotectonics
of a regional low-angle normal fault zone in central Italy. Tectonics,
19, 1038–1055.
Bortolotti, V., Fazzuoli, M., Pandeli, E., Principi, G., Babbini, A. & Corti,
S. 2001. Geology of central and Eastern Elba island, Italy. Ofioliti, 26,
97–150.
Bos, B. & Spiers, C.J. 2001. Experimental investigation into the microstructural
and mechanical evolution of phyllosilicate-bearing fault rock under conditions
favouring pressure solution. Journal of Structural Geology, 23, 1187–1202.
Bos, B. & Spiers, C.J. 2002. Frictional–viscous flow of phyllosilicate-bearing fault
rock: microphysical model and implications for crustal strength profiles.
Journal of Geophysical Research, 107(B), 10.1029/2001JB000301.
Boschi, E., Guidoboni, E., Ferrari, G., Valensise G. & Gasperini, P. 1999.
Catalogue of strong Italian earthquakes from 461 bc to 1990. Annali di
Geofisica, 42, http://www.ingrm.it/homita.htm
Brune, J.N. 1968. Seismic moment, seismicity and rates of slip along major fault
zones. Journal of Geophysical Research, 73, 777–784.
Carmignani, L. & Kligfield, R. 1990. Crustal extension in the Northern
Apennines: the transition from compression to extension in the Alpi Apuane
core complex. Tectonics, 9, 1275–1303.
Chiaraluce, L., Piccinini, D. & Chiarabba, C. 2003. High resolution microseismicity
data constraining the geometry and kinematic of an active very
low-angle normal fault in the Northern Apennine (Central Italy). Geophysical
Research Abstracts, 5, 11930.
Chiodini, G., Frondini, F., Cardellini, C., Parello, F. & Peruzzi, L. 2000.
Rate of diffuse carbon dioxide Earth degassing estimated from carbon balance
of regional aquifers: the case of central Apennine, Italy. Journal of
Geophysical Research, 105, 8423–8434.
Collettini, C. & Barchi, M.R. 2002. A low angle normal fault in the Umbria
region (Central Italy): a mechanical model for the related microseismicity.
Tectonophysics, 359, 97–115.
Collettini, C. & Barchi, M.R. 2004. A comparison of structural data and seismic
images for low-angle normal faults in the Northern Apennines (Central Italy):
constraints on activity. In: Alsop, G.I., Holdsworth, R.E., McCaffrey,
K.J.W. & Hand, M. (eds) Flow Processes in Faults and Shear Zones.
Geological Society, London, Special Publications, 224, 95–112.
Collettini, C. & Sibson, R.H. 2001. Normal faults normal friction? Geology, 29,
927–930.
Cox, S.F. 1995. Faulting processes at high fluid pressures: an example of fault
valve behaviour from the Wattle Gully fault, Victoria, Australia. Journal of
Geophysical Research, 100, 12841–12859.
Daniel, J.M. & Jolivet, L. 1995. Detachments faults and pluton emplacement:
Elba island (Tyrrhenian Sea). Bulletin de la Socie´te´ Ge´ologique de France,
166, 341–354.
Deino, A., Keller, J.V.A., Minelli, G. & Pialli, G. 1992. Datazioni 40Ar/39Ar
dell’Unita` di Ortano–Rio Marina (Isola d’Elba): risultati preliminari. Studi
Geologici Camerti, Volume Speciale, 1992/2, 187–192.
Duranti, S., Palmeri, R., Pertusati, P.C. & Ricci, C.A. 1992. Geological
evolution and metamorphic petrology of the basal sequences of eastern Elba
(complex II). Acta Vulcanologica, 2, 213–229.
Evans, J.P. & Chester, F.M. 1995. Fluid rock interaction in faults of the San
Andreas system: inferences from San Gabriel fault-rock geochemistry and
microstructures. Journal of Geophysical Research, 100, 13007–13020.
Fitz Gerald, J.D. & Stunitz, H. 1993. Deformation of granitoids at low
metamorphic grade. I: Reactions and grain size reduction. Tectonophysics,
221, 269–297.
Gratier, J.-P., Favreau, P. & Renard, F. 2003. Modeling fluid transfer along
California faults when integrating pressure solution crack sealing and
compaction processes. Journal of Geophysical Research, 108(B2), 2104.
Gueydan, F., Leroy, Y.L., Jolivet, L. & Agard, P. 2003. Analysis of continental
midcrustal strain localization induced by microfracturing and reaction-softening.
Journal of Geophysical Research, 108(B2), 2064.
Handy, M.R. 1994. The energetics of steady state heterogeneous shear in mylonitic
rocks. Material Science and Engineering, A175, 261–272.
Hanmer, S. & Passchier, C.W. 1991. Shear sense indicators: a review. Geological
Survey of Canada Papers, 90, 1–71.
Hayman, N.W., Knott, J.R., Cowan, D.S., Nemser, E. & Sarna-Wojcicki,
A.M. 2003. Quaternary low-angle slip on detachment faults in Death Valley,
California. Geology, 31, 343–346.
Holdsworth, R.E. 2004. Weak faults—rotten cores. Science, 303, 181–182.
Holdsworth, R.E., Stewart, M., Imber, J. & Strachan, R.A. 2001. The
structure and rheological evolution of reactivated continental fault zones: a
review and case study. In: Miller, J.A., Holdsworth, R.E., Buick, I.S. &
Hand, M. (eds) Continental Reactivation and Reworking. Geological Society,
London, Special Publications, 184, 115–137.
Imber, J., Holdsworth, R.E., Butler, C.A. & Strachan, R.A. 2001. A
reappraisal of the Sibson–Scholz fault model: the nature of the frictional to
viscous (‘brittle–ductile’) transition along a long-lived, crustal-scale fault,
Outer Hebrides, Scotland. Tectonics, 20, 601–624.
Jackson, J.A. & White, N.J. 1989. Normal faulting in the upper continental crust:
observation from regions of active extension. Journal of Structural Geology,
11, 15–36.
Janecke, S.U. & Evans, J.P. 1988. Feldspar-influenced rock rheologies. Geology,
16, 1064–1067.
Jolivet, L., Faccenna, C. & Goffe´, B. et al. 1998. Midcrustal shear zones in
postorogenic extension: example from the northern Tyrrhenian Sea. Journal
of Geophysical Research, 103, 12123–12160.
Keller, J.V.A. & Coward, M.P. 1996. The structure and evolution of the
Northern Tyrrhenian Sea. Geological Magazine, 133, 1–16.
Keller, J.V.A. & Pialli, G. 1990. Tectonics of the island of Elba: a reappraisal.
Bollettino della Societa` Geologica Italiana, 109, 413–425.
Keller, J.V.A., Minelli, G. & Pialli, G. 1994. Anatomy of late orogenic
extension: the Northern Apennines case. Tectonophysics, 238, 275–294.
Lavecchia, G., Brozzetti, F., Barchi, M.R., Keller, J. & Menichetti, M.
1994. Seismotectonic zoning in east–central Italy deduced from the analysis
of the Neogene to present deformations and related stress fields. Geological
Society of America Bulletin, 106, 1107–1120.
O’Hara, K. 1988. Fluid flow and volume loss during mylonitisation: an origin for
phyllonite in an overthrust setting, North Carolina, U.S.A. Tectonophysics,
156, 21–36.
Pascucci, V., Merlini, S. & Martini, I.P. 1999. Seismic stratigraphy in the
Miocene–Pleistocene sedimentary basins of the Northern Tyrrhenian Sea and
western Tuscany (Italy). Basin Research, 11, 337–356.
Pauselli, C. & Federico, C. 2002. The brittle/ductile transition along the Crop03
seismic profile: relationship with the geological features. Bollettino della
Societa` Geologica Italiana, 1, 25–35.
Pertusati, P.C., Raggi, G., Ricci, C.A., Duranti, S. & Palmieri, R. 1993.
Evoluzione post-collisionale dell’Elba centro-orientale. Memorie della Societa`
Geologica Italiana, 49, 297–312.
Pialli, G., Barchi, M.R. & Minelli, G. 1998. Results of the CROP03 Deep
Seismic Reflection Profile. Memorie della Societa` Geologica Italiana, 52.
Piccinini, D., Cattaneo, M. & Chiarabba, C. et al. 2003. A microseismic study
in a low seismicity area of Italy: the Citta` di Castello 2000–2001 experiment,
Annals of Geophysics, 26, 1315–1324.
Proffett, J.M. 1977. Cenozoic geology of the Yerington district, Nevada, and
implications for the nature of Basin and Range faulting. Geological Society of
America Bulletin, 88, 247–266.
Rocchi, R., Westerman, S.D., Dini, A., Innocenti, F. & Tonarini, S. 2002.
Two-stage of laccoliths at Elba Island, Italy. Geology, 30, 983–986.
Rutter, R.E. 1986. On nomenclature of mode of failure transitions in rocks.
Tectonophysics, 122, 381–387.
Saupe´, F., Marignac, C., Moine, B., Sonet, J. & Zimmerman, J.L. 1982.
Datation par les me´thodes K/Ar et Rb/Sr de quelques roches de la partie
orientale de l’ıˆle d’Elbe (Province de Livourne, Italie). Bulletin de Mine´ralogie,
105, 236–245.
Serri, G., Innocenti, F. & Manetti, P. 1993. Geochemical and petrological
evidence of the subduction of delaminated Adriatic continental litosphere in
the genesis of the Neogene–Quaternary magmatism of central Italy.
Tectonophysics, 223, 117–147.
Sibson, R.H. 1974. Frictional constraints on thrust, wrench and normal faults.
Nature, Physical Science, 249, 542–543.
Sibson, R.H. 1985. A note on fault reactivation. Journal of Structural Geology, 7,
751–754.
Sibson, R.H. 1989. Earthquake faulting as a structural process. Journal of
Structural Geology, 11, 1–14.
Sibson, R.H. 1992. Implications of fault-valve behaviour for rupture nucleation and
recurrence. Tectonophysics, 211, 283–293.
Sleep, N.H. 1995. Ductile creep, compaction, and rate and state dependant
friction within major fault. Journal of Geophysical Research, 100,
13065–13080.
Stewart, M., Holdsworth, R.E. & Strachan, R.A. 2000. Deformation
processes and weakening mechanisms within the frictional–viscous transition
zone on major crustal-scale faults: insights from the Great Glen Fault Zone,
Scotland. Journal of Structural Geology, 22, 543–560.
Storti, F. 1995. Tectonics of the Punta Bianca promontory: insights for the
evolution of the Northern Apennine–Tyrrhenian Sea basin. Tectonics, 14,
832–847.
Trevisan, L. 1950. L’Elba orientale e la sua tettonica di scivolamento per gravita`.
Memorie dell’Istituto Geologico dell’Universita` di Padova, 16, 1–30.
Trevisan, L., Marinelli, G., Barberi, F., et al. 1967. Carta Geologica dell’Isola
d’Elba. Scala 1:25.000. Consiglio Nazionale delle Ricerche, Gruppo di
Ricerca per la Geologia dell’Appennino centro-settentrionale e della Toscana,
Pisa.
Vissers, R.L.M., Drury, M.R., Hoogerduijin Strating, E.H., Spiers, C.J. &
van der Wal, D. 1995. Mantle shear zones and their effect on lithosphere
strength during continental breakup. Tectonophysics, 249, 155–171.
Wernicke, B. 1995. Low-angle normal faults and seismicity: a review. Journal of
Geophysical Research, 100, 20159–20174.
Wernicke, B. & Axen, G.J. 1988. On the role of isostasy in the evolution of
normal fault systems. Geology, 16, 848–851.
Westaway, R. 1999. The mechanical feasibility of low-angle normal faulting.
Tectonophysics, 308, 407–443.
Wibberley, C.A.J. 1999. Are feldspar-to-mica reactions necessarily reactionsoftening
processes in fault zones? Journal of Structural Geology, 21,
1219–1227.
Wintsch, R.P., Christoffersen, R. & Kronenberg, A.K.. 1995. Fluid–rock
reaction weakening of fault zones. Journal of Geophysical Research, 100,
13021–13032.