Cookies

We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Department of Earth Sciences

Profile

Publication details for Professor Yaoling Niu

Niu, Yaoling, Regelous, M., Wendt, J.I., Batiza, R. & O’Hara, M.J. (2002). Geochemistry of near-EPR seamounts: Importance of source vs. process and the origin of enriched mantle component. Earth and Planetary Science Letters 199(3-4): 327-345.

Author(s) from Durham

Abstract

Niu and Batiza [Earth Planet. Sci. Lett. 148 (1997) 471–483] show that lavas from the seamounts on the flanks of the East Pacific Rise (EPR) between 5° and 15°N vary from extremely depleted tholeiites to highly enriched alkali basalts. The extent of depletion and enrichment exceeds the known range of seafloor lavas in terms of the abundances and ratios of incompatible elements. New Sr–Nd–Pb isotope data for these lavas show variations (87Sr/86Sr=0.702362–0.702951; 206Pb/204Pb=18.080–19.325 and 143Nd/144Nd 0.512956–0.513183) larger than observed in lavas erupted on the nearby EPR axis. These isotopic ratios correlate with each other, with the abundances and ratios of incompatible elements, with the abundances of measured major elements such as MgO, CaO, Na2O and TiO2 contents, and with the abundances and ratios of major elements corrected for crystal fractionation to Mg#=0.72 (Ti72, Al72, Fe72, Ca72, Na72, and Ca72/Al72). These coupled correlations and the spatial distribution of seamounts require an EPR mantle source that has long-term (>1 Ga) lithological heterogeneities on very small scales [Niu and Batiza, Earth Planet. Sci. Lett. 148 (1997) 471–483]. Mid-ocean ridge basalt (MORB) major element systematics are, to a great extent, inherited from their fertile sources, which requires caution when using major element data to infer melting conditions. The significant correlations in elemental and isotopic variability (defined as RSD%=1σ/mean×100) between seamount and axial lavas suggest that both seamount and axial volcanisms share a common heterogeneous mantle source. We confirm previous interpretations [Niu and Batiza, Earth Planet. Sci. Lett. 148 (1997) 471–483; Niu et al., J. Geophys. Res. 104 (1999) 7067–7087] that the geochemical variability of lavas from the broad northern EPR region results from melting-induced mixing of a two-component mantle with the enriched (easily melted) component dispersed as physically distinct domains in a more depleted (refractory) matrix prior to the major melting events. The data also allow the conclusion that recycled oceanic crust cannot explain elevated abundances of elements such as Ba, Rb, Cs, Th, U, K, Pb, Sr etc. in enriched MORB and many ocean island basalts. These elements will be depleted in recycled oceanic crust that has passed through subduction zone dehydration reactions. We illustrate that deep portions of recycled oceanic lithosphere are important geochemical reservoirs hosting these and other incompatible elements as a result of metasomatism taking place at the interface between the low velocity zone and the cooling and thickening oceanic lithosphere.

References

1

Y. Niu, R. Batiza, Trace element evidence from seamounts
for recycled oceanic crust in the eastern Paci¢c
mantle, Earth Planet. Sci. Lett. 148 (1997) 471^483.

2

Y. Niu, K.D. Collerson, R. Batiza, J.I. Wendt, M. Regelous,
The origin of E-type MORB at ridges far from mantle
plumes: The East Paci¢c Rise at 11‡20P, J. Geophys.
Res. 104 (1999) 7067^7087.

3

G.N. Hanson, C.H. Langmuir, Modelling of major elements
in mantle systems using trace element approaches,
Geochim. Cosmochim. Acta 42 (1978) 725^741.

4

Y. Niu, D.G. Waggoner, J.M. Sinton, J.J. Mahoney,
Mantle source heterogeneity and melting processes
beneath sea£oor spreading centres: the East Paci¢c
Rise, 18‡^19‡S, J. Geophys. Res. 101 (1996) 27711^
27733.

5

W.G. Melson, T.L. Vallier, T.L. Wright, G. Byerly, J.
Nelen, Chemical diversity of abyssal volcanic glass
erupted along Paci¢c Atlantic and Indian Ocean sea£oor
spreading centres. In: The Geophysics of the Paci¢c
Ocean and its Margin: A Volume in Honour of George
P. Woollard, Geophys. Monogr. 19 (1976) 351^368.

6

J.-G. Schilling, M. Zajac, R. Evans, T. Johnston, W.
White, J.D. Devine, R. Kingsley, Petrological and geochemical
variations along the Mid-Atlantic Ridge from
29‡N to 73‡N, Am. J. Sci. 283 (1983) 510^586.

7

A. Zindler, H. Staudigel, R. Batiza, Isotope and trace
element geochemistry of young Paci¢c seamounts: implications
for the scale of mantle heterogeneity, Earth Planet.
Sci. Lett. 70 (1984) 175^195.

8

C.H. Langmuir, J.F. Bender, R. Batiza, Petrological and
tectonic signi¢cance of the East Paci¢c Rise, 5‡30P^
14‡30PN, Nature 332 (1986) 422^426.

9

E.M. Klein, C.H. Langmuir, Global correlations of ocean
ridge basalt chemistry with axial depth and crustal thickness,
J. Geophys. Res. 92 (1987) 8089^8115.

10

Y. Niu, R. Batiza, An empirical method for calculating
melt compositions produced beneath mid-ocean ridges:
application for axis and o¡-axis (seamounts) melting,
J. Geophys. Res. 96 (1991) 21753^21777.

11

C.H. Langmuir, E.M. Klein, T. Plank, Petrological systematics
of mid-ocean ridge basalts: Constraints on melt
generation beneath ocean ridges. In: Mantle Flow and
Melt Generation at Mid-Ocean Ridges, Geophys.
Monogr. 71 (1992) 183^280.

12

Y. Niu, R. He¤kinian, Spreading rate dependence of the
extent of mantle melting beneath ocean ridges, Nature 385
(1997) 326^329.

13

Y. Niu, Mantle melting and melt extraction processes
beneath ocean ridges: Evidence from abyssal peridotites,
J. Petrol. 38 (1997) 1047^1074.

14

D.W. Forsyth, Geophysical constraints on mantle £ow
and melt generation beneath mid-ocean ridges. In: Mantle
Flow and Melt Generation at Mid-Ocean Ridges, Geophys.
Monogr. 71 (1992) 1^66.

15

Y. Niu, D. Bideau, R. He¤kinian, R. Batiza, Mantle compositional
control on the extent of mantle melting, crust
production, gravity anomaly, ridge morphology, and
ridge segmentation: A case study at the Mid-Atlantic
Ridge 33^35‡N, Earth Planet. Sci. Lett. 286 (2001) 383^
399.

16

J.N. Natland, Partial melting of a lithologically heterogeneous
mantle: Inferences from crystallization histories of
magnesian abyssal tholeiites from the Siqueiros Fracture
Zone. In: Magmatism in the Ocean Basins, Geol. Soc.
Spec. Publ. 42 (1989) 41^70.

17

F. Albare'de, How deep do common basaltic magmas
form and di¡erentiate?, J. Geophys. Res. 97 (1992)
10,997^11,009.

18

Y. Shen, D.W. Forsyth, Geochemical constraints on initial
and ¢nal depth of melting beneath mid-ocean ridges,
J. Geophys. Res. 100 (1995) 2211^2237.

19

P.R. Castillo, E. Klein, J. Bender, C. Langmuir, S. Shirey,
R. Batiza, W. White, Petrology and Sr, Nd, and Pb isotope
geochemistry of mid-ocean ridge basalt glasses from
the 11‡45PN to 15‡00PN segments of the East Paci¢c Rise,
Geochem. Geophys. Geosyst. 1 (2000) 1999GC000024.

20

C.C. Lundstrom, D.E. Sampson, M. Per¢t, J. Gill, Q.
Williams, Insights into MORB petrogenesis: U-series disequilibria
from the Siqueiros Transform, Lamont Seamounts
and East Paci¢c Rise, J. Geophys. Res. 104
(1999) 13035^13048.

21

M.M. Hirschmann, E.M. Stolper, A possible role for garnet
pyroxenite in the origin of the ’garnet signature’ in
MORB, Contrib. Mineral. Petrol. 124 (1996) 185^208.

22

M.M. Hirschmann, M.S. Ghiorso, M. Stolper, Calculation
of peridotite partial melting from Thermodynamic
models of minerals and Melts. II. Isobaric variations in
melts near the solidus and owing to variable source composition,
J. Petrol. 40 (1999) 297^313.

23

M.J. O’Hara, Importance of the ‘shape’ of the melting
regime during partial melting of the mantle, Nature 314
(1985) 58^62.

24

Y. Niu, R. Batiza, Extreme mantle source heterogeneities
beneath the northern East Paci¢c Rise ^ Trace elementevidence from near-ridge seamounts, Proc. 30th ICG 15
(1997) 109^120.

25

M.J. O’Hara, Geochemical evolution during fractional
crystallisation of a periodically re¢lled magma chamber,
Nature 266 (1977) 503^507.

26

J.M. Sinton, R.S. Detrick, Mid-ocean ridge magma chambers,
J. Geophys. Res. 97 (1992) 197^216.

27

R. Batiza, Y. Niu, J.L. Karsten, W. Boger, E. Potts, L.
Norby, R. Butler, Steady and non-steady state magma
chambers below the East Paci¢c Rise, Geophys. Res.
Lett. 23 (1996) 221^224.

28

R. Batiza, D. Vanko, Petrology of young Paci¢c seamounts,
J. Geophys. Res. 89 (1984) 11235^11260.

29

R. Batiza, Y. Niu, W.C. Zayac, Chemistry of seamounts
near the East Paci¢c Rise implications for the geometry of
sub-axial mantle £ow, Geology 18 (1990) 1122^1125.

30

R. Batiza, Y. Niu, Petrology and magma chamber processes
at the East Paci¢c Rise V9‡N, J. Geophys. Res. 97
(1992) 6779^6797.

31

M. Regelous, Y. Niu, J.I. Wendt, R. Batiza, A. Greig,
K.D. Collerson, An 800 ka record of the geochemistry
of magmatism on the East Paci¢c Rise at 10‡30PN: Insights
into magma chamber processes beneath a fastspreading
ocean ridge, Earth Planet. Sci. Lett. 168
(1999) 45^63.

32

J.I. Wendt, M. Regelous, Y. Niu, R. He¤kinian, K.D.
Collerson, Geochemistry of lavas from the Garrett Transform
Fault: insights into mantle heterogeneity beneath
the eastern Paci¢c, Earth Planet. Sci. Lett. 173 (1999)
271^284.

33

M.J. O’Hara, Are oceanic basalts primary magmas?, Nature
220 (1968) 683^686.

34

D. Walker, T. Shibata, S.E. DeLong, Abyssal tholeiites
from the Oceanographer Fracture Zone, II, Phase equilibria
and mixing, Contrib. Mineral. Petrol. 70 (1979) 111^
125.

35

T.L. Grove, R.J. Kinzler, W.B. Bryan, Fractionation of
mid-ocean ridge basalt (MORB), In: Mantle Flow and
Melt Generation at Mid-Ocean Ridges, Geophys.
Monogr. 71 (1992) 281^310.

36

A.W. Hofmann, K.P. Jochum, M. Seufert, W.M. White,
Nb and Pb in oceanic basalts: new constraints on mantle
evolution, Earth Planet. Sci. Lett. 79 (1986) 33^45.

37

T.H. Green, J.D. Blundy, J. Adam, G.M. Yaxley, SIM
determination of trace element partition coe⁄cients between
garnet, clinopyroxene and hydrous basalgic liquids
at 2^7.5 GPa and 1080^1200‡C, Lithos 53 (2000) 165^187.

38

J. Blundy, B. Wood, Prediction of crystal-melt partition
coe⁄cients from elastic moduli, Nature 372 (1994) 452^454.

39

P.D. Asimow, M.M. Hirschmann, E.M. Stolper, Calculation
of peridotite partial melting from thermodynamic
models of minerals and melts, IV. Adiabatic decompression
and the composition and mean properties of midocean
ridge basalts, J. Petrol. 42 (2001) 963^998.

40

I.H. Campbell, The mantle’s chemical structure: Insights
from the melting products of mantle plumes. In: The
Earth’s Mantle ^ Composition, Structure and Evolution,
Cambridge University Press, Cambridge, 1998, pp. 259^
310.

41

S.-s. Sun, W.F. McDonough, Chemical and isotopic systematics
in ocean basalt: Implication for mantle composition
and processes, In: Magmatism in the ocean Basins,
Geol. Soc. Spec. Publ. 42 (1989) 313^345.

42

S.-s. Sun, G.N. Hanson, Origin of Ross Island basanitoids
and limitations upon the heterogeneity of mantle sources
for alkali basalts and nephelinites, Contrib. Mineral. Petrol.
52 (1975) 77^106.

43

W.M. White, A.W. Hofmann, Sr and Nd isotope geochemistry
of oceanic mantle evolution, Nature 296
(1982) 821^825.

44

C.J. Alle'gre, B. Hamelin, B. Dupre¤, Statistical analyses of
isotopic ratios in MORB: the mantle blob cluster model
in the convective regime of the mantle, Earth Planet. Sci.
Lett. 71 (1984) 71^84.

45

C.J. Alle'gre, D.L. Turcotte, Implications of a two-component
marble-cake, Nature 323 (1986) 123^127.

46

J.G. Fitton, D. James, Basic volcanism associated with
intraplate linear features, Phil. Trans. R. Soc. London
317 (1986) 253^266.

47

A. Zindler, S. Hart, Chemical geodynamics, Annu. Rev.
Earth Planet. Sci. 14 (1986) 493^571.

48

A.D. Saunders, M.J. Norry, J. Tarney, Origin of MORB
and chemically-depleted mantle reservoirs: Trace element
constraints, J. Petrol. Spec. Issue (1988) 415^445.

49

B.L. Weaver, The origin of ocean island basalt end-member
compositions: Trace element and isotopic constraints,
Earth Planet. Sci. Lett. 104 (1991) 381^397.

50

J.J. Mahoney, J.M. Sinton, D.M. Kurz, J.D. Macdougall,
K.J. Spencer, G.W. Lugmair, Isotope and trace element
characteristics of a super-fast spreading ridge: East Paci¢c
Rise, 13^23‡S, Earth Planet. Sci. Lett. 121 (1994) 173^193.

51

R.N. Thompson, G.L. Hendry, S.J. Parry, An assessment
of the relative roles of crust, mantle in magma genesis: An
elemental approach, Phil. Trans. R. Soc. London A310
(1984) 549^590.

52

B. Dupre¤, C.J. Alle'gre, Pb-Sr isotope correlation in Indian
Ocean basalts and mixing phenomena, Nature 303
(1983) 142^146.

53

J. PhippsMorgan, W.J. Morgan, Two-stage melting and
the geochemical evolution of the mantle: a recipe for
mantle plum-pudding, Earth Planet. Sci. Lett. 170
(1999) 215^239.

54

D. McKenzie, Some remarks on the movement of small
melt fractions in the mantle, Earth Planet. Sci. Lett. 95
(1989) 53^72.

55

G.N. Hanson, Geochemical evolution of the sub oceanic
mantle, J. Geol. Soc. London 134 (1977) 235^253.

56

A. Prinzhofer, E. Lewin, C.J. Alle'gre, Stochastic melting
of the marble-cake mantle: evidence from local study of
the East Paci¢c Rise at 12‡50PN, Earth Planet. Sci. Lett.
92 (1989) 189^206.

57

D.A. Wood, A variably veined suboceanic upper mantle ^
Genetic signi¢cance for mid-ocean ridge basalts from geochemical
evidence, Geology 7 (1979) 499^503.

58

A.P. LeRoex, H.J.B. Dick, A.L. Erlank, A.M. Reid, F.A.
Frey, S.R. Hart, Geochemistry, mineralogy and petrogenesis
of lavas erupted along the Southwest Indian Ridge
between the Bouvet Triple Junction and 11 degrees east,
J. Petrol. 24 (1983) 267^318.

59

A.W. Hofmann, W.M. White, Mantle plumes from ancient
oceanic crust, Earth Planet. Sci. Lett. 57 (1982)
421^436.

60

A.W. Hofmann, Chemical di¡erentiation of the Earth:
the relationship between mantle, continental crust, and
oceanic crust, Earth Planet. Sci. Lett. 90 (1988) 297^314.

61

J.A. Pearce, D.W. Peate, Tectonic implications of the
composition of volcanic arc magmas, Annu. Rev. Earth
Planet. Sci. 23 (1995) 251^285.

62

J.P. Davidson, Deciphering mantle and crustal signatures
in subduction zone magmatism. In: Subduction ^ Top to
Bottom, Geophys. Monogr. 96 (1996) 251^264.

63

J.W. Hawkins, Evolution of the Lau Basin ^ insights from
ODP Leg 135, In: Active Margins and Marginal Basins of
the Western Paci¢c, Geophys. Monogr. 88 (1995) 125^
174.

64

A. Ewart, K.D. Collerson, M. Regelous, J.I. Wendt, Y.
Niu, Geochemical evolution within the Tonga-Kermadec-
Lau arc-backarc system: The role of varying mantle
wedge composition in space and time, J. Petrol. 39
(1988) 331^368.

65

T. Plank, C.H. Langmuir, The chemical compositions of
subducting sediments and its consequencews for the crust
and mantle, Chem. Geol. 145 (1998) 325^394.

66

W.F. McDonough, Partial melting of subducted oceanic
crust and isolation of its residual eclogitic lithology, Phil.
Trans. R. Soc. London A 335 (1991) 407^418.

67

Y. Niu, T. Gilmore, S. Mackie, A. Greig, W. Bach, Mineral
chemistry, whole-rock compositions and petrogenesis
of ODP Leg 176 gabbros: Data and discussion, ODP Sci.
Results, 176 (in press).

68

K. Donnelly, C.H. Langmuir, S.L. Goldstein, A. Lagatta,
The origin of alkali and ocean icland basalts: contradictions
and solutions, EOS Trans. AGU, 82, Fall Meet.
Suppl. (2001) F1402.

69

D. McKenzie, R.K. O’Nions, The source regions of oceanic
island basalts, J. Petrol. 36 (1995) 133^159.

70

W.L. Gri⁄n, S.Y. O’Reilley, C.G. Ryan, The composition
and origin of subcontinental lithosphere, Geochem. Soc.
Spec. Publ. 6 (1999) 241^258.

71

D.H. Green, Composition of basaltic magmas as indicators
of conditions of origin: Application to oceanic volcanism,
Phil. Trans. R. Soc. London A268 (1971) 707^725.

72

F.A. Frey, D.H. Green, Integrated models of basalt petrogenesis:
a study of quartz tholeiites to olivine melilitites
from South eastern Australia utilizing geochemical and
experimental petrological data, J. Petrol. 3 (1978) 463^513.

73

A.N. Halliday, D.-C. Lee, S. Tommasini, G.R. Davies,
C.R. Paslick, J.G. Fitton, D.E. James, Incompatible trace
elements in OIB and MORB source enrichment in the
sub-oceanic mantle, Earth Planet. Sci. Lett. 133 (1995)
379^395.

74

C. Class, S.L. Goldstein, R. Altherr, P. Bache'lery, The
process of plume-lithosphere interactions in the ocean basins
^ the case of Grande Comore, J. Petrol. 39 (1988)
881^903.

75

M.J. O’Hara, Volcanic plumbing and the space problem ^
thermal and geochemical consequences of large-scale assimilation
in ocean island development, J. Petrol. 39
(1998) 1077^1089.

76

M.B. Baker, M.M. Hirschmann, M.S. Ghiorso, E.M.
Stolper, Compositions of near-solidus peridotite melts
from experiments and thermodynamic calculations, Nature
375 (1995) 308^311.

77

P. Schiano, B. Bourdon, On the preservation of mantle
information in ultrama¢c nodules: glass inclusions within
minerals versus interstitial glasses, Earth Planet. Sci. Lett.
169 (1999) 173^188.

78

P. Schiano, B. Bourdon, R. Clocchiatti, D. Massare, M.E.
Varela, Y. Bottinga, Low-degree partial melting trends
recorded in upper mantle minerals, Earth Planet. Sci.
Lett. 160 (1988) 537^550.

79

S.Y. O’Reilly, W.L. Gri⁄n, Mantle metasomatism beneath
western Victoria, Australia: I, Metasomatic processes
in Cr-diopside lherzolites, Geochim. Cosmochim.
Acta 52 (1988) 433^447.

80

F.A. Frey, C.J. Suen, H. Stockman, The Ronda high
temperature peridotite: Geochemistry and petrogenesis,
Geochim. Cosmochim. Acta 49 (1985) 2469^2491.

81

E. Takazawa, F.A. Frey, N. Shimizu, M. Obata, Whole
rock compositional variations in an upper mantle peridotite
(Horoman, Hokkaido, Japan): are they consistent
with a partial melting process ?, Geochim. Cosmochim.
Acta 64 (2000) 695^716.

82

M. Gregoire, B.N. Moine, S.Y. O’Reilly, J.Y. Cottin, A.
Giret, A Trace element residence and partitioning in mantle
xenoliths metasomatized by highly alkaline, silicateand
carbonate-rich melts (Kerguelen Islands, Indian
Ocean), J. Petrol. 41 (2000) 477^509.

83

D.A. Ionov, W.L. Gri⁄n, S.Y. Oreilly, Volatile-bearing
minerals and lithophile trace elements in the upper mantle,
Chem. Geol. 141 (1997) 153^184.

84

M.M. Hirschmann, M.B. Baker, E.M. Stolper, Partial
melting of mantle pyroxenite, EOS Trans. AGU, 76,
Fall Meet. Suppl. (1995) 696.

85

R. van der Hilst, Evidence for deep mantle circulation
from global tomography, Nature 386 (1997) 237^246.

86

S. Ono, E. Ito, T. Katsura, Mineralogy of subducted basaltic
crust (MORB) from 25 to 37 GPa, and chemical
heterogeneity of the lower mantle, Earth Planet. Sci.
Lett. 190 (2001) 57^63.

87

R.L. Rudnick, M. Barth, I. Horn, W.F. McDonough,
Rutile-bearing refractory eclogite: Missing link between
continents and depleted mantle, Science 287 (2000) 278^
281.

88

W. Todt, R.A. Cli¡, A. Hanser, A.W. Hofmann, Evaluation
of a 202Pb3205Pb double spike for high-precision lead
isotope analysis, In: Earth Processes: Reading the Isotopic
Code, Geophys. Monogr. 95 (1996) 429^437.