Cookies

We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Department of Earth Sciences

Profile

Publication details for Professor Yaoling Niu

Niu, Yaoling (2004). Bulk-rock major and trace element compositions of abyssal peridotites: Implications for mantle melting, melt extraction and post-melting processes beneath ocean ridges. Journal of Petrology 45(12): 2423-2458.

Author(s) from Durham

Abstract

This paper presents the first comprehensive major and trace element data for ~ 130 abyssal peridotite samples from the Pacific and Indian ocean ridge-transforms systems. The data reveal important features about the petrogenesis of these rocks, mantle melting and melt extraction processes beneath ocean ridges, and elemental behaviours. While abyssal peridotite are serpentinized and have also experienced seafloor weathering, magmatic signatures remain well preserved in the bulk-rock compositions. The better inverse correlation of MgO with progressively heavier rare earth elements (REEs) reflects varying amounts of melt depletion. This melt depletion may result from recent sub-ridge mantle melting, but could also be inherited from fertile source histories. Light REEs in bulk-rock samples are more enriched, not more depleted, than in the constituent clinopyroxene (cpx) of the same sample suites previously studied. If the cpx light REEs record sub-ridge mantle melting processes, then the bulk-rock light REEs must reflect post-melting refertilization. The significant correlations of light REEs (e.g., La, Ce, Pr, Nd) with immobile high field strength elements (HFSEs, e.g., Nb and Zr) suggest that enrichments of both light REEs and HFSEs resulted from a common magmatic process. The refertilization takes place in the “cold” thermal boundary layer (TBL) beneath ridges where the ascending melts migrate through and interact with the advanced residues. The refertilization apparently did not affect cpx relics analyzed for trace elements. This observation suggests grain-boundary porous melt migration in the TBL. The ascending melts may not be thermally “reactive”, and thus may have only affected cpx rims, which, together with precipitated olivine, entrapped melt, and the rest of the rock, were subsequently serpentinized. The very large variations in bulk-rock Zr/Hf and Nb/Ta ratios are unexpected. The correlation between the two ratios is consistent with the observations in basalts that DZr/DHf <1 and DNb/DTa <1. Given the identical charges (5+ for Nb and Ta; 4+ for Zr and Hf) and essentially the same ionic radii (RNb/RTa = 1.000 and RZr/RHf = 1.006 ~ 1.026), yet a factor of ~ 2 mass differences (MZr/MHf = 0.511 and MNb/MTa = 0.513), it is hypothesized that mass-dependent Ds or diffusion/mass-transfer rates may be important in causing elemental fractionations during porous melt ascent in the TBL. It is also possible that some “exotic” phases with highly fractionated Zr/Hf and Nb/Ta ratios may exist in these rocks, thus having “nugget” effects on the bulk-rock analyses. All these hypotheses need testing by constraining the storage and distributions of all the incompatible trace elements. As serpentine contains up to 13 wt % H2O, and is stable up to 7 GPa before transformed to dense hydrous magnesium silicate phases that are stable at pressures of ~ 5 to 50 GPa, it is possible that the serpentinized peridotites may survive, at least partly, subduction-zone dehydration, and transport large amounts of H2O (also Ba, Rb, Cs, K, U, Sr, Pb etc. with elevated U/Pb ratios) into the deep mantle. The latter may contribute to the HIMU component in the source regions of oceanic basalts.

References

Aharonov, E., Spiegelman, M. & Kelemen, P. (1997) Threedimensional flow and reaction in porous media: implications for the Earth’s mantle and sedimentary basins. Journal of Geophysical Research 101, 14821–14831.
Albarede, F. (1992). How deep do common basaltic magmas form and differentiate? Journal of Geophysical Research 97, 10997–11009.
Albarede, F. & van der Hilst, R. D. (2002). Zoned mantle convection.
Philosophical Transactions of the Royal Society of London 360, 2569– 2592.
Allegre, C. J., Hart, S. R. & Minster, J.-F. (1983). Chemical structure and evolution of the mantle and continents determined by inversion of Nd and Sr isotopic data, I. Theoretical methods. Earth and Planetary Science Letters 66, 177–190.
Armstrong, R. L. (1968). A model for the evolution of strontium and lead isotopes in a dynamic earth. Review of Geophysics and Space Physics 6, 175–200.
Asimow, P. D. (1999). A model that reconciles major- and traceelement data from abyssal peridotites. Earth and Planetary Science Letters 169, 303–319.
Asimow, P. D., Hirschmann, M. M., Ghiorso, M. S., O’Hara, M. J. & Stolper, E. (1995). The effect of pressure-induced solid–solid phase transitions on decompression melting of the mantle. Geochimica et Cosmochimica Acta 59, 4489–4506.
Asimow, P. D., Hirschmann, M. M. & Stolper, E. M. (2001).
Calculation of peridotite partial melting from thermodynamic models of minerals and melts, IV. Adiabatic decompression and the composition and mean properties of mid-ocean ridge basalts.
Journal of Petrology 42, 963–998.
Bach, W., Alt, J. C., Niu, Y., Humphris, S. E., Erzinger, J. & Dick, H. J. B. (2001). The chemical consequences of late-stage hydrothermal circulation in an uplifted block of lower ocean crust at the Southwest Indian Ridge: results from ODP Hole 735B (Leg 176).
Geochimica et Cosmochimica Acta 65, 3267–3287.
Baker, M. B. & Beckett, J. R. (1999). The origin of abyssal peridotites:
a
reinterpretation of constraints based on primary bulk compositions.
Earth and Planetary Science Letters 171, 49–61.
Baker, M. B. & Stolper, E. M. (1994). Determining the composition of high-pressure mantle melts using diamond aggregates. Geochimica et Cosmochimica Acta 58, 2811–2827.
Batiza, R. & Niu, Y. (1992). Petrology and magma chamber processes at the East Pacific Rise 9300N. Journal of Geophysical Research 97, 6779–6797.
Blichert-Toft, J. & Albarede, F. (1997). The Lu–Hf isotope geochemistry of chondrites and evolution of the mantle–crust system. Earth and Planetary Science Letters 148, 243–258.
Blundy, J. & Wood, B. (1994). Prediction of crystal–melt partition coefficients from elastic moduli. Nature 372, 452–454.
Bodinier, J.-L., Merlet, C., Bendini, R. M., Siemen, F., Ramaidi, M. & Garrido, C. J. (1996). Distribution of niobium and tantalum and other highly incompatible trace elements in the lithospheric mantle:
the spinel paradox. Geochimica et Cosmochimica Acta 60, 545–550.
Bougault, H., Joron, J. L. & Treuil, M. (1979). Alteration, fractional crystallization, partial melting, mantle properties from trace elements in basalts recovered in the North Atlantic. In: Talwani, M., Harrison, C. G. & Hayes, D. E. (eds) Deep Drilling Results in the North Atlantic: Ocean Crust. American Geophysical Union Maurice Ewing 2, 352–368.
Bougault, H., Dmitriev, L., Schilling, J.-G., Sobolev, A., Jordan, J. L.
&
Needham, H. D. (1988). Mantle heterogeneity from trace elements:
MAR triple junction near 14N. Earth and Planetary Science Letters 88, 27–36.
Brandon, A. D, Snow, J. E., Walker, R. J., Morgan, J. W. & Mock, T. D.
(2000). 190Pt–186Os and 187Re–187Os systematics of abyssal peridotites.
Earth and Planetary Science Letters 177, 319–335.
Braun, M. G. & Kelemen, P. B. (2002). Dunite distribution in the Oman Ophiolite: implications for melt flux through porous dunite conduits. Geochemistry, Geophysics, Geosystems 11, 8603, doi:10.1029/ 2001GC000289.
Cannat, M. (1993). Emplacement of mantle rocks in the seafloor at mid-ocean ridges. Journal of Geophysical Research 98, 4163–4172.
Cannat, M. & Casey, J. F. (1995). An ultramafic lift at the Mid-Atlantic
Ridge: successive stages of magmatism in serpentinized peridotites from the 15N region. In: Vissers, R. L. M. & Nicolas, A. (eds) Mantle and Lower Crust Exposed in Oceanic Ridges and Ophiolites. Dordrecht:
Kluwer Academic, pp. 5–34.
Cannat, M., Bideau, D. & Bougault, H. (1992). Serpentinized peridotites and gabbros in the Mid-Atlantic Ridge axial valley at 15370N and 16520N. Earth and Planetary Science Letters 109, 87–106.
Castillo, P. R., Natland, J. H., Niu, Y. & Lonsdale, P. (1998). Sr, Nd, and Pb isotopic variation along the Pacific ridges from 53 to 56S:
implications for mantle and crustal dynamic processes. Earth and Planetary Science Letters 154, 109–125.
Coleman, R. G. (1977). Ophiolites. New York: Springer, 230 pp.
DePaolo, D. J. (1980). Crustal growth and mantle evolution: inferences from models of element transport and Nd and Sr isotopes. Geochimica et Cosmochimica Acta 44, 1185–1196.
Dick, H. J. B. (1989). Abyssal peridotites, very slow spreading ridges and ocean ridge magmatism. In: Saunders, A. D. & Norry, M. J.
(eds) Magmatism in the Ocean Basins. Geological Society, London, Special Publications 42, 71–105.
Dick, H. J. B. & Fisher, R. L. (1984). Mineralogic studies of the residues of mantle melting: abyssal and alpine-type peridotites. In:
Kornprobst, J. (ed.) The Mantle and Crustal–Mantle Relationships— Mineralogical, Petrological, and Geodynamic Processes of the Third International Kimberlite Conference, Vol. II. New York: Elsevier, pp. 295–308.
Dick, H. J. B. & Natland, J. H. (1996). Late-stage melt evolution and transport in the shallow mantle beneath the East Pacific Rise. In:
Mevel, C., Gills, K. M. & Allan, J. F. (eds) Proceedings of the Ocean Drilling Program, Scientific Results, 147. College Station, TX: Ocean Drilling Program, pp. 103–134.
Dick, H. J. B., Fisher, R. L. & Bryan, W. B. (1984). Mineralogical variability of the uppermost mantle along mid-ocean ridges. Earth and Planetary Science Letters 69, 88–106.
Dick, H. J. B. & Shipboard Party of Leg 176 (2000). A long in situ section of the lower ocean crust: results of ODP Leg 176 drilling at the Southwest Indian Ridge. Earth and Planetary Science Letters 179, 31–51.
Dick, H. J. B., Ozawa, K., Meyer, P. S., Niu, Y., Robinson, P. T., Constantin, M., Herbert, R., Natland, J., Hirth, G. & Mackie, S.
(2002). Primary silicate mineral chemistry of a 15-km section of very-slow spread lower ocean crust: ODP Hole 735B, Southwest Indian Ridge. In: Natland, J. H., Dick, H. J. B., Miller, D. J. & Von Herzen, R. P. (eds) Proceedings of the Ocean Drilling Program, Scientific Results, 176, 60 pp. [Online]. Available at http://www-odp.
tamu.edu/publications/176_SR/chap_10/chap_10.htm. Accessed August 2004.
Eggins, S. M., Woodhead, J. D., Kinsley, L. P. J., Mortimer, G. E., Sylvester, P., McCulloch, M. T., Hergt, J. M. & Handler, M. R.
(1997). A simple method for the precise determination of >40 trace elements in geological samples by ICPMS using enriched isotope internal standardization. Chemical Geology 134, 311–326.
Eggins, S. M., Rudnick, R. L. & McDonough, W. F. (1998). The composition of peridotites and their minerals: a laser-ablation ICPMS study. Earth and Planetary Science Letters 154, 53–71.
Elderfield, H. & Greaves, M. J. (1982). The rare earth elements in seawater. Nature 296, 214–219.
Elliott, T., Plank, T., Zindler, A., White, W. & Bourdon, B. (1997).
Element transport from slab to volcanic front at the Mariana Arc.
Journal of Geophysical Research 102, 14991–15019.
Elthon, D. (1992). Chemical trends in abyssal peridotites:
refertilization
of depleted oceanic mantle. Journal of Geophysical Research 97, 9015–9025.
Engel, C. G. & Fisher, R. L. (1969). Lherzolite, anorthosite, gabbro, and basalt dredged from the mid-Indian Ocean ridge. Science 166, 1136–1141.
Engel, C. G. & Fisher, R. L. (1975). Granitic to ultramafic rock complexes of the Indian Ocean ridge system, western Indian Ocean.
Geological Society of America Bulletin 86, 1553–1578.
Ewart, A., Collerson, K. D., Regelous, M., Wendt, J. I. & Niu, Y.
(1998). Geochemical evolution within the Tonga–Kermadec–Lau arc–backarc system: the role of varying mantle wedge composition in space and time. Journal of Petrology 39, 331–368.
Falloon, T. J. & Green, D. H. (1988). Anhydrous partial melting of peridotite from 8 to 35 kb and the petrogenesis of MORB. Journal of Petrology, Special Lithosphere Issue, 379–414.
Fang, N. & Niu, Y. (2003). Late Paleozoic ultramafic lavas in Yunnan, SW China, and their geodynamic significance. Journal of Petrology 44, 141–158.
Fisher, R. L., Henry, H. J. B., Natland, J. H. & Meyer, P. S. (1987).
Mafic/ultramafic suites of the slow spreading Southwest Indian
Ridge: Protea exploration of the Antarctic plate boundary, 24E– 47E. Ofioliti 11, 147–178.
Foley, S. F., Matthias, G. B. & Jenner, G. A. (1999). Rutile/melt partition coefficients for trace elements and an assessment of the influence of rutile on the trace element characteristics of subduction zone magmas. Geochimica et Cosmochimica Acta 64, 933–938.
Foley, S., Tiepolo, M. & Vannucci, R. (2002). Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature 417, 837–840.
Forsyth, D. W. & The MELT Seismic Team (1998). Imaging the deep seismic structure beneath a mid-ocean ridge: the MELT experiment.
Science 280, 1215–1218.
Frey, F. A. (1969). Rare earth abundances in a high-temperature peridotite intrusion. Geochimica et Cosmochimica Acta 33, 1429–1447.
Frey, F. A., Suen, C. J. & Stockman, H. (1985). The Ronda high temperature peridotite: geochemistry and petrogenesis. Geochimica et Cosmochimica Acta 49, 2469–2491.
Frost, B. R. (1985). On the stability of sulfides, oxides, and native metals in serpentine. Journal of Petrology 26, 31–63.
Frost, D. J. (1999). The stability of dense hydrous magnesium silicates in Earth’s transition zone and lower mantle. In: Fei, Y., Bertka, C. M.
& Mysen, B. O. (eds) Mantle Petrology: Field Observations and High Pressure Experimentation—a Tribute to Francis R. (Joe) Boyd.
Geochemical
Society Special Publication 6, 241–258.
Gast, P. W. (1968). Trace element fractionation and the origin of tholeiitic and alkaline magma types. Geochimica et Cosmochimica Acta 32, 1055–1086.
Godard, M., Jousselin, D. & Bodinier, J. L. (2000). Relationship between geochemistry and structure beneath a paleo-spreading
centre: a study of the mantle section of the Oman ophiolite. Earth and Planetary Science Letters 180, 133–148.
Green, T. H., Blundy, J. D., Adam, A. & Yaxley, G. M. (2000). SIMS determination of trace element partition coefficients between garnet, clinopyroxene and hydrous basaltic liquids at 2–75 GPa and 1080– 1200C. Lithos 53, 165–187.
Griselin, M. & Davies, G. R. (2003). The major element composition of unaltered peridotites: implications for the nature of partial melting.
Geophysics Research Abstract 5, 02201.
Grove, T. L., Kinzler, R. J. & Bryan, W. B. (1992). Fractionation of mid-ocean ridge basalts (MORB). In: Phipps Morgan, J., Blackman, D. K. & Sinton, J. M. (eds) Mantle Flow and Melt Generation at Mid-ocean Ridges. Geophysical Monograph, American Geophysical Union 71, 281–310.
Hart, S. R. & Zindler, A. (1986). In search of bulk Earth composition.
Chemical Geology 57, 247–267.
Hauri, E. H., Wagner, T. P. & Grove, T. L. (1994). Experimental and natural partitioning of Th, U, Pb and other trace elements between garnet, clinopyroxene and basaltic melts. Chemical Geology 117, 149–166.
Hellebrand, E. & Snow, J. E. (2003). A correction for subsolidus exsolution effects on trace elements in clinopyroxenes of abyssal peridotites. Geophysical Research Abstracts 5, 03177.
Hellebrand, E., Snow, J. E., Dick, H. J. B. & Hofmann, A. W. (2001).
Coupled major and trace elements as indicators of the extent of melting in mid-ocean-ridge peridotites. Nature 410, 677–681.
Hirschmann, M. M. & Stolper, E. M. (1996). A possible role for garnet pyroxenite in the origin of the ‘garnet signature’ in MORB.
Contributions to Mineralogy and Petrology 124, 185–208.
Hirschmann, M. M., Ghiorso, M. S. & Stolper, E. M. (1999).
Calculation of peridotite partial melting from thermodynamic models of minerals and melts. II. Isobaric variations in melts near the solidus and owing to variable source composition. Journal of Petrology 40, 297–313.
Hofmann, A. W. (1988). Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust.
Earth and Planetary Science Letters 90, 297–314.
Hofmann, A. W. (1997). Mantle geochemistry: the message from oceanic volcanism. Nature 385, 219–229.
Hofmann, A. W., Jochum, K. P., Seufert, M. & White, W. M. (1986).
Nb and Pb in oceanic basalts: new constraints on mantle evolution.
Earth and Planetary Science Letters 79, 33–45.
Jacobsen, S. B. & Wasserburg, G. J. (1979). The mean age of mantle and crustal reservoirs. Journal of Geophysical Research 84, 7411– 7427.
Jagoutz, E., Palme, H., Blum, H., Cendales, M., Dreibus, G., Spettel, B., Lorenz, V. & W€anke, H. (1979). The abundances of major, minor and trace elements in the Earth’s mantle as derived from primitive ultramafic nodules. Proceeding of 10th Lunar Planetary Science Conference. Geochimica et Cosmochimica Acta Supplement 10, 2031–2051.
Janecky, D. R. & Seyfried, W. E. (1986). Hydrothermal serpentinization of peridotite within the oceanic crust: experimental investigations of mineralogy and major element chemistry. Geochimica et Cosmochimica Acta 50, 1357–1378.
Jaques, A. L. & Green, D. H. (1980). Anhydrous melting of peridotite at 0–15 kb pressure and the genesis of tholeiitic basalts. Contributions to Mineralogy and Petrology 73, 287–310.
Jochum, K. P., Seufert, H. M., Spettel, B. & Palme, H. (1986). The solar-system abundances of Nb, Ta and Y and the relative abundances of refractory lithophile elements in differentiated planetary bodies. Geochimica et Cosmochimica Acta 50, 1173–1183.
Jochum, K. P., Hofmann, A. W., Seufert, M., Stoll, B. & Polat, A.
(2002). Niobium in planetary cores: consequences for the interpretation of terrestrial Nb systematics. EOS Transactions, American Geophysical Union 83, F1446.
Johnson, K. T. M. & Dick, H. J. B. (1992). Open system melting and the temporal and spatial variation of peridotite and basalt compositions at the Atlantis II F. Z. Journal of Geophysical Research 97, 9219–9241.
Johnson, K. T. M., Dick, H. J. B. & Shimizu, N. (1990). Melting in the oceanic upper mantle: an ion microprobe study of diopside in abyssal peridotites. Journal of Geophysical Research 95, 2661–2678.
Kelemen, P. B., Shimizu, N. & Salters, V. J. (1995). Extraction of
midocean-
ridge basalt from the upwelling mantle by focused flow of melt in dunite channels. Nature 375, 747–753.
Kelemen, P. B., Hirth, G., Shimizu, N., Spiegelman,M. & Dick, H. J. B.
(1997). A review of melt migration processes in the adiabatically upwelling mantle beneath oceanic ridges. Philosophical Transactions of the Royal Society of London, Series A 355, 67–102.
Kelley, D. S. & Fr€uh-Green, G. L. (1999). Abiogenic methane in deepseated mid-ocean ridge environments: insights from stable isotope analyses. Journal of Geophysical Research 104, 10439–10460.
Kelley, D. S., Karson, J. A., Blackman, D. K., Fruh-Green, G. L., Butterfield, D. A., Lilley, M. D., Olson, E. J., Schrenk, M. O., Roe, K. K., Lebon, G. T. & Rivizzigno, P. (2001). An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30N. Nature 412, 145–149.
Kelley, D. S., Baross, J. A. & Delaney, J. R. (2002). Volcanoes, fluids, and life at mid-ocean ridge spreading centers. Annual Review of Earth and Planetary Sciences 30, 385–491.
Kinzler, R. J. & Grove, T. L. (1992). Primary magmas of mid-ocean ridge basalts, 2, applications. Journal of Geophysical Research 97, 6907–6926.
Klein, C. & Hurlbut, C. S., Jr (1999). Manual of Mineralogy (after J. D. Dana), revised 21st edn. New York: John Wiley, 681 pp.
Klein, E. M. & Langmuir, C. H. (1987). Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness. Journal of Geophysical Research 92, 8089–8115.
Klemme, S., Blundy, J. D. & Wood, B. J. (2002). Experimental constraints on major and trace element partitioning during partial melting of eclogite. Geochimica et Cosmochimica Acta 66, 3109–3123.
Kogiso, T., Tatsumi, Y. & Nakano, S. (1997). Trace element transport during dehydration processes in the subducted oceanic crust: 1.
Experiments and implications for the origin of ocean island basalts.
Earth and Planetary Science Letters 148, 193–205.
Korenaga, J. & Kelemen, P. B. (1997). Melt migration through the oceanic lower crust: a constraint from melt percolation modeling with finite solid diffusion. Earth and Planetary Science Letters 156, 1–11.
Kuroda, K. & Irifune, T. (1998). Observation of phase transformations in serpentine at high pressure and high temperature by in situ X-ray diffraction measurements. In: Manghnani, M. H. & Yagi, T. (eds) Properties of Earth and Planetary Materials. American Geophysical Union Monograph 101, 545–554.
Kwiecien, W. (1990). Silicate Rock Analysis by AAS. Brisbane, QLD:
School of Geology, Queensland University Technology.
Langmuir, C. H. (1989). Geochemical consequences of in situ crystallization. Nature 340, 199–205.
Langmuir, C. H., Klein, E. M. & Plank, T. (1992). Petrological systematics of mid-ocean ridge basalts: constraints on melt generation beneath ocean ridges. In: Phipps Morgan, J., Blackman, D. K.
& Sinton, J. M. (eds) Mantle Flow and Melt Generation at Mid-ocean Ridges. American Geophysical Union Monograph 71, 183–280.
Lasaga, A. C. (1998). Kinetic Theory in the Earth Sciences. Princeton,
NJ:
Princeton University Press, 811 pp.
Lee, C.-T. A., Brandon, A. D. & Norman, M. (2003). Vanadium in peridotites as a proxy for paleo-fO2 during partial melting: prospects, limitations, and implications. Geochimica et Cosmochimica Acta 67, 3045–3064.
Le Roex, A. P., Dick, H. J. B., Erlank, A. L., Reid, A. M., Frey, F. A. & Hart, S. R. (1983). Geochemistry, mineralogy and petrogenesis of lavas erupted along the Southwest Indian Ridge between the Bouvet Triple Junction and 11 degrees east. Journal of Petrology 24, 267–318.
Le Roex, A. P., Dick, H. J. B., Erlank, A. L., Reid, A. M., Frey, F. A. & Hart, S. R. (1985). Petrology and geochemistry of basalts from the American–Antarctic Ridge, Southern Ocean: implications for the westward influence of the Bouvet mantle plume. Contributions to Mineralogy and Petrology 90, 367–380.
Lindsley, D. H. & Anderson, D. J. (1983). A two-pyroxene thermometer. Proceedings of the 13th Lunar and Planetary Science Conference, Part 2. Journal of Geophysical Research 88, Supplement, A887–A906.
Lundstrom, C. C. (2000). Rapid diffusive infiltration of sodium into partially molten peridotite. Nature 403, 527–530.
Lundstrom, C. C., Gill, J., Williams, Q. & Perfit, M. R. (1995). Mantle melting and basalt extraction by equilibrium porous flow. Science 270, 1958–1961.
McDonough, W. F. (1991). Partial melting of subducted oceanic crust and isolation of its residual eclogitic lithology. Philosophical Transactions of the Royal Society of London, Series A 335, 407–418.
McDonough, W. F. & Sun, S.-s. (1995). The composition of the Earth.
Chemical Geology 120, 223–253.
McKenzie, D. & Bickle, M. J. (1988). The volume and composition of melt generated by extension of the lithosphere. Journal of Petrology 29, 625–679.
Michael, P. J. & Bonatti, E. (1985). Peridotite composition from the North Atlantic: regional and tectonic variations and implications for partial melting. Earth and Planetary Science Letters 73, 91–l04.
Michael, P. J., et al. (1994). Mantle control of a dynamically evolving spreading center. Earth and Planetary Science Letters 121, 451–468.
Munker, C., Pfander, J. A., Weyer, S., Buchl, A., Kleine, T. & Mezger, K. (2003). Evolution of planetary cores and the Earth–Moon system from Nb/Ta systematics. Science, 301, 84–87.
Mysen, B. O. & Boettcher, A. L. (1975). Melting of a hydrous mantle:
II. Geochemistry of crystals and liquids formed by anatexis of mantle peridotite at high pressures and high temperatures as a function of controlled activities of water, hydrogen, and carbon dioxide. Journal of Petrology 16, 549–593.
Nagasawa, H., Wakita, H., Higuchi, H. & Onuma, N. (1969). Rare earths in peridotite nodules: an explanation of the genetic relationships between basalt and peridotite nodules. Earth and Planetary Science Letters 5, 377–381.
Natland, J. H. (1989). Partial melting of a lithologically heterogeneous
mantle: inferences from crystallisation histories of magnesian abyssal tholeiites from the Siqueiros Fracture Zone. In: Saunders, A. D. & Norry, M. J. (eds) Magmatism in the Ocean Basins. Geological Society, London, Special Publications 42,41–70.
Natland, J. H. & Dick, H. J. B. (2001). Formation of the lower ocean crust and the crystallisation of gabbroic cumulates at a very slowly spreading ridge. Journal of Volcanology and Geothermal Research 110, 191–233.
Navon, O. & Stolper, E. (1987). Geochemical consequences of melt
percolation: the upper mantle as a chromatographic column. Journal of Geology 95, 285–307.
Nicolas, A. (1989). Structures of Ophiolite and Dynamics of Oceanic Lithosphere.
Dordrecht: Kluwer Academic, 368 pp.
Nielson, R. L. (1989). Phase equilibria constraints on AFC generated liquid lines of descent: trace element and Sr and Nd isotopes. Journal of Geophysical Research 94, 787–794.
Niu, Y. (1997). Mantle melting and melt extraction processes beneath ocean ridges: evidence from abyssal peridotites. Journal of Petrology 38, 1047–1074.
Niu, Y. (1999). Comments on some misconceptions in igneous/ experimental petrology and methodology: a reply. Journal of Petrology 40, 1195–1203.
Niu, Y. (2003). Excess olivine and positive FeO–MgO trend in bulkrock abyssal peridotites as a consequence of porous melt migration beneath ocean ridges. EOS Transactions, American Geophysical Union 84, Fall Meeting Supplement, Abstract F1540.
Niu, Y. & Batiza, R. (1991). An empirical method for calculating melt compositions produced beneath mid-ocean ridges: application for axis and off-axis (seamounts) melting. Journal of Geophysical Research 96, 21753–21777.
Niu, Y. & Batiza, R. (1993). Chemical variation trends at fast and slow spreading ridges. Journal of Geophysical Research 98, 7887–7902.
Niu, Y. & Batiza, R. (1997). Trace element evidence from seamounts for recycled oceanic crust in the eastern Pacific mantle. Earth and Planetary Science Letters 148, 471–483.
Niu, Y. & Hekinian, R. (1997a). Spreading rate dependence of the extent of mantle melting beneath ocean ridges. Nature 385, 326–329.
Niu, Y. & Hekinian, R. (1997b). Basaltic liquids and harzburgitic residues in the Garrett transform: a case study at fast-spreading ridges. Earth and Planetary Science Letters 146, 243–258.
Niu, Y. & Lesher, C. M. (1991). Hydrothermal alteration of mafic metavolcanic rocks and genesis of Fe–Zn–Cu sulfide deposits, Stone Hill district, Alabama. Economic Geology 86, 983–1001.
Niu, Y. & O’Hara, M. J. (2003). The origin of ocean island basalts
(OIB): a new perspective from petrology, geochemistry and mineral physics considerations. Journal of Geophysical Research 108, 10.1029/ 2002JB002048, 19 pp.
Niu, Y., Waggoner, D. G., Sinton, J. M. & Mahoney, J. J. (1996).
Mantle source heterogeneity and melting processes beneath seafloor spreading centers: the East Pacific Rise, 18–19S. Journal of Geophysical Research 101, 27711–27733.
Niu, Y., Langmuir, C. H. & Kinzler, R. J. (1997). The origin of abyssal
peridotites: a new perspective. Earth and Planetary Science Letters 152, 251–265.
Niu, Y., Collerson, K. D., Batiza, R., Wendt, J. I. & Regelous, M.
(1999). The origin of E-type MORB at ridges far from mantle
plumes: the East Pacific Rise at 11200N. Journal of Geophysical Research 104, 7067–7087.
Niu, Y., Bideau, D., Hekinian, R. & Batiza, R. (2001). Mantle compositional control on the extent of melting, crust production, gravity anomaly and ridge morphology: a case study at the Mid- Atlantic Ridge 33–35N. Earth and Planetary Science Letters 186, 383–399.
Niu, Y., Regelous, M. Wendt, J. I., Batiza, R. & O’Hara, M. J. (2002a).
Geochemistry of near-EPR seamounts: importance of source vs process and the origin of enriched mantle component. Earth and Planetary Science Letters 199, 329–348.
Niu, Y., Gilmore, T., Mackie, S., Greig, A. & Bach, W. (2002b).
Mineral chemistry, whole-rock compositions and petrogenesis of ODP Leg 176 gabbros: data and discussion. Proceedings of the Ocean Drilling Program, Scientific Results, 176. 60 pp. [Online] Available at http://www-odp.tamu.edu/publications/176_SR/chap_08/
chap_08.htm. Accessed August 2004.
Niu, Y., O’Hara, M. J. & Pearce, J. A. (2003). Initiation of subduction zones as a consequence of lateral compositional buoyancy contrast within the lithosphere: a petrologic perspective. Journal of Petrology 44, 851–866.
O’Hanley, D. S. (1996). Serpentinites—Records of Tectonic and Petrological History. Oxford: Oxford University Press, 277 pp.
O’Hara, M. J. (1977). Geochemical evolution during fractional crystallization of a periodically refilled magma chamber. Nature 266, 503–507.
O’Hara, M. J. (1985). Importance of the ‘shape’ of the melting regime during partial melting of the mantle. Nature 314, 58–62.
O’Hara, M. J. (1995). Trace element geochemical effects of integrated melt extraction and ‘shaped’ melting regime. Journal of Petrology 36, 1111–1132.
O’Hara, M. J. (1998). Volcanic plumbing and the space problem— thermal and geochemical consequences of large-scale assimilation in ocean island development. Journal of Petrology 39, 1077–1089.
O’Hara, M. J. & Fry, N. (1996). Chemical effects of small packet crystallization in large magma chambers—further resolution of the highly incompatible element paradox. Journal of Petrology 37, 859–890.
O’Hara, M. J. & Herzberg, C. (2002). Interpretation of trace element and isotope features of basalts: relevance of field relations, petrology, major element data, phase equilibria, and magma chamber modeling in basalt petrogenesis. Geochimica et Cosmochimica Acta 66, 2167–2191.
O’Hara, M. J. & Mathews, R. E. (1981). Geochemical evolution in an advancing, periodically replenished, periodically tapped, continuously fractionating magma chamber. Journal of the Geological Society, London 138, 237–277.
O’Hara, M. J., Fry, N. & Prichard, H. M. (2001a). Minor phases as carriers of trace elements in non-modal crystal–liquid separation processes I: basic relationships. Journal of Petrology 42, 1869–1885.
O’Hara, M. J., Fry, N. & Prichard, H. M. (2001b). Minor phases as carriers of trace elements in non-modal crystal–liquid separation processes II: Illustrations and bearing on behaviour of REE, U, Th and the PGE in igneous processes. Journal of Petrology 42, 1887–1910.
O’Nions, R. K., Evensen, N. M. & Hamilton, P. J. (1979). Geochemical modeling of mantle differentiation and crustal growth. Journal of Geophysical Research 84, 6091–6101.
Onuma, N., Higuchi, H., Wakita, H. & Nagasawa, H. (1968). Trace element partition between two pyroxenes and host volcanic rocks.
Earth and Planetary Science Letters 5, 47–51.
O’Reilly, S. Y. & Griffin, W. L. (1988). Mantle metasomatism beneath western Victoria, Australia: I, Metasomatic processes in Cr-diopside lherzolites. Geochimica et Cosmochimica Acta 52, 433–447.
Peterson, N. L. (1974). Experimental evidence for diffusion mechanisms in pure melts. In: Aaronson, H. I. (ed.) Diffusion. Metals Park,
OH: American Society of Metals, pp. 47–82.
Phipps Morgan, J. (1987). Melt migration beneath mid-ocean ridge spreading centers. Geophysical Research Letters 14, 1238–1241.
Prinzhofer, A. & Allegre, C. J. (1985). Residual peridotites and the mechanisms of partial melting. Earth and Planetary Science Letters 74, 251–265.
Regelous, M., Niu, Y., Wendt, J. I., Batiza, R., Greig, A. & Collerson, K. D. (1999). An 800 ka record of the geochemistry of magmatism on the East Pacific Rise at 10300N: insights into magma chamber processes beneath a fast-spreading ocean ridge. Earth and Planetary Science Letters 168, 45–63.
Rudnick, R. L. & Fountain, D. M. (1995). Nature and composition of the continental crust: a lower crustal perspective. Review of Geophysics 33, 267–309.
Rudnick, R. L., Barth, M., Horn, I. & McDonough, W. F. (2000).
Rutile-bearing refractory eclogite: missing link between continents and depleted mantle. Science 287, 278–281.
Salters, V. J. M. & Dick, H. J. B. (2002). Mineralogy of the mid-oceanridge basalt source from neodymium isotopic composition of abyssal peridotites. Nature 394, 162–165.
Seyfried, W. S. & Dibble, W. E. (1980). Seawater–peridotite interaction at 300C, 500 bars: implications for the origin of oceanic serpentinites. Geochimica et Cosmochimica Acta 44, 309–321.
Shen, Y. & Forsyth, D. W. (1995). Geochemical constraints on initial and final depth of melting beneath mid-ocean ridges. Journal of Geophysical Research 100, 2211–2237.
Shimizu, N. (1975). Rare earth elements in garnets and clinopyroxenes from garnet lherzolite nodules in kimberlites. Earth and Planetary Science Letters 25, 26–32.
Sinton, J. M. & Detrick, R. S. (1992). Mid-ocean ridge magma chambers. Journal of Geophysical Research 97, 197–216.
Snow, J., Hart, S. R. & Dick, H. J. B. (1993). ‘Orphan’ 87 in abyssal
peridotites: daddy was a granite. Science 262, 1861–1863.
Snow, J., Hart, S. R. & Dick, H. J. B. (1994). Nd and Sr isotopic evidence for a link between mid-ocean-ridge basalts and abyssal peridotites. Nature 371, 57–60.
Snow, J. E. & Dick, H. J. B. (1995). Pervasive magnesium loss by marine weathering of peridotite. Geochimica et Cosmochimica Acta 59, 4219–4235.
Sparks, D. W. & Parmentier, E. M. (1991). Melt extraction from the mantle beneath spreading centers. Earth and Planetary Science Letters 105, 368–377.
Spiegelman, M. (1993). Physics of melt extraction: theory, implications, and applications. Philosophical Transactions of the Royal Society of London, Series A 342, 23–41.
Spiegelman, M. & Elliot, T. (1993). Geochemical consequences of magma transport for U-series disequilibrium. Earth and Planetary Science Letters 118, 1–20.
Spiegelman, M. & Kenyon, P. (1992). The requirements for the chemical disequilibrium during magma migration. Earth and Planetary Science Letters 109, 611–620.
Spiegelman, M., Aharonov, E. & Kelemen, P. (2001). Causes and consequences of flow organization during melt transport: the reaction infiltration instability in compactable media. Journal of Geophysical Research 106, 2061–2077.
Sun, S.-s. & McDonough, W. F. (1989). Chemical and isotopic systematics in ocean basalt: implications for mantle composition and processes. In: Saunders, A. D. & Norry, M. J. (eds) Magmatism in the Ocean Basins. Geological Society, London, Special Publications 42, 313–345.
Takazawa, E., Frey, F. A., Shimizu, N. & Obata, M. (2000). Whole rock compositional variations in an upper mantle peridotite (Horoman, Hokkaido, Japan): are they consistent with a partial melting process? Geochimica et Cosmochimica Acta 64, 695–716.
Taylor, S. R. & McLennan, S. M. (1985). The Continental Crust: its Composition and Evolution. Oxford: Blackwell, 312 pp.
Tiepolo, M., Vannucci, R., Oberti, R., Foley, S., Bottazzi, P. & Zanetti, A. (2000). Nb and Ta incorporation and fractionation in titanian pargasite and kaersutite: crystal–chemical constraints and implications for natural systems. Earth and Planetary Science Letters 176, 185–201.
Toomey, D. R., Wilcock, W. S. D., Solomon, S. C., Hammond, W.C.
& Orcutt, J.A. (1998). Mantle seismic structure beneath the MELT region of the East Pacific Rise from P and S tomography. Science 280, 1224–1227.
Turcotte, D. L. & Phipps Morgan, J. (1992). Magma migration and mantle flow beneath a mid-ocean ridge. In: Phipps Morgan, J., Blackman, D. K. & Sinton, J. M. (eds) Mantle Flow and Melt Generation at Mid-ocean Ridges. American Geophysical Union Monograph 71, 155–182.
Ulmer, P. & Trommsdorff, V. (1995). Serpentine stability to mantle depths and subduction-related magmatism. Science 268, 858–861.
Wade, J. & Wood, B. J. (2001). The Earth’s ‘missing’ niobium may be in the core. Nature 409, 75–78.
Walter, M. W. (1999). Comments on ‘Mantle melting and melt extraction processes beneath ocean ridges: evidence from abyssal peridotites’ by Yaoling Niu. Journal of Petrology 40, 1187–1193.
Wang, L., Essene, E. J. & Zhang, Y. (1999). Mineral inclusions in pyrope crystals from Garnet Ridge, Arizona, USA: implications for processes in the upper mantle. Contributions to Mineralogy and Petrology 135, 164–178.
Wendt, J. I., Regelous, M., Niu, Y., Hekinian, R. & Collerson, K. D.
(1999). Geochemistry of lavas from the Garrett Transform Fault:
insights into mantle heterogeneity beneath the eastern Pacific. Earth and Planetary Science Letters 173, 271–284.
Weyer, S., Munker, C., Rekamper, M. & Mezger, K. (2002).
Determination of ultra-low Nb, Ta, Zr and Hf concentrations and the chondritic Zr/Hf and Nb/Ta ratio by isotope dilution analyses with multiple collector ICP-MS. Chemical Geology 187, 295–313.
Weyer, S., Munker, C. & Mezger, K. (2003). Nb/Ta, Zr/Hf and REE in the depleted mantle: implications for the differentiation history of the crust–mantle system. Earth and Planetary Science Letters 205, 309–423.
Wetzel, L. R. & Shock, E. L. (2000). Distinguishing ultramafic from basalt-hosted submarine hydrothermal system by comparing calculated vent fluid compositions. Journal of Geophysical Research 105, 8319–8340.
Williams, Q. & Hemley, R. J. (2001). Hydrogen in the deep earth.
Annual Review of Earth and Planetary Sciences 29, 365–418.
Wood, B. J., Bryndzia, L. & Johnson, K. E. (1990). Mantle oxidation state and its relationship to tectonic environment and fluid speciation. Science 248, 337–345.
Wood, B. J. & Blundy, J. D. (1997). A predictive model for rare earth element partitioning between clinopyroxene and anhydrous silicate melt. Contributions to Mineralogy and Petrology 129, 166–181.
Yang, H.-J., Sen, G. & Shimizu, N. (1998). Mid-ocean ridge melting:
constraints from lithospheric xenoliths at Oahu, Hawaii. Journal of Petrology 39, 277–295.
You, C.-F., Castillo, P. R., Gieskes, J. M., Chan, L. H. & Spivack, A. J.
(1996). Trace element behavior in hydrothermal experiments:
implications for fluid processes at shallow depths in subduction zones. Earth and Planetary Science Letters 140, 41–52.