We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Department of Earth Sciences


Publication details for Professor Yaoling Niu

Gong, Hongmei, Guo, Pengyuan, Chen, Shuo, Duan, Meng, Sun, Pu, Wang, Xiaohong & Niu, Yaoling (2020). A re-assessment of nickel-doping method in iron isotope analysis on rock samples using multi-collector inductively coupled plasma mass spectrometry. Acta Geochimica

Author(s) from Durham


Element doping has been proved to be a useful method to correct for the mass bias fractionation when analyzing iron isotope compositions. We present a systematic re-assessment on how the doped nickel may affect the iron isotope analysis in this study by carrying out several experiments. We find three important factors that can affect the analytical results, including the Ni:Fe ratio in the analyte solutions, the match of the Ni:Fe ratio between the unknown sample and standard solutions, and the match of the Fe concentration between the sample and standard solutions. Thus, caution is required when adding Ni to the analyte Fe solutions before analysis. Using our method, the δ56Fe and δ57Fe values of the USGS standards W-2a, BHVO-2, BCR-2, AGV-2 and GSP-2 are consistent with the recommended literature values, and the long-term (one year) external reproducibility is better than 0.03 and 0.05‰ (2SD) for δ56Fe and δ57Fe, respectively. Therefore, the analytical method established in our laboratory is a method of choice for high quantity Fe isotope data in geological materials.