Cookies

We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Department of Earth Sciences

Profile

Publication details for Professor Yaoling Niu

Sun, P., Niu, Yaoling, Guo, P.Y., Chen, S., Duan, M., Gong, H.M., Wang, X.H. & Xiao, Y.Y. (2019). Multiple mantle metasomatism beneath the Leizhou Peninsula, South China: Evidence from elemental and Sr-Nd-Pb-Hf isotope geochemistry of the late Cenozoic volcanic rocks. International Geology Review 61(14): 1786-1802.

Author(s) from Durham

Abstract

We analysed whole-rock major and trace elements and Sr-Nd-Pb-Hf isotopes of the late Cenozoic volcanic rocks in the Leizhou Peninsula, South China to investigate their mantle source characteristics. These volcanic rocks, collected from Jiujiang, Tianyang and Huoju areas of the Leizhou Peninsula, are characterized by incompatible element enrichment but variable isotopic depletion. The volcanic rocks from Jiujiang and Tianyang show prominent primitive-mantle-normalized positive Nb, Ta and Sr anomalies and depleted Sr-Nd-Pb-Hf isotope compositions, whereas those from Huoju show slight positive to negative Nb and Ta anomalies, a prominent positive Pb anomaly, and more enriched Sr-Nd-Pb-Hf isotope compositions. Two types of mantle metasomatism are required to explain the geochemical characteristics of these rocks. The Jiujiang and Tianyang samples were largely derived from a mantle source metasomatized recently by a low-F melt. Such low-F melt is generated within the asthenospheric mantle, which is enriched in volatiles and incompatible elements with positive Sr anomaly and depleted Sr-Nd-Pb-Hf isotope compositions. The Huoju samples were largely derived from a mantle source metasomatized by recycled upper continental crust material. These two types of mantle metasomatism beneath the Leizhou Peninsula are consistent with trace element characteristics of mantle mineralogy (e.g. clinopyroxene vs. amphibole), which reflects source evolution in space and time (e.g. tectonic setting change).