Cookies

We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Department of Earth Sciences

Profile

Publication details for Dr Julie Prytulak

Wei, Feixiang, Prytulak, Julie, Xu, Jiandong, Wei, Wei, Hammond, James O. S. & Zhao, Bo (2017). The cause and source of melting for the most recent volcanism in Tibet: A combined geochemical and geophysical perspective. Lithos 288-289: 175-190.

Author(s) from Durham

Abstract

We investigate the youngest volcanic activity on the Tibetan Plateau by combining observations from petrologic, geochemical and seismic tomography studies. Recent (from 2.80 Ma to present) post-collisional potassium-rich lavas from the Ashikule Volcanic Basin (AVB) in northwestern Tibet are characterised by remarkably enriched light rare earth elements (LREE) relative to heavy rare earth elements (HREE), and enriched large ion lithophile element (LILE) relative to high field strength elements (HFSE). Strontium and neodymium isotopic compositions are surprisingly restricted, and show little evidence for mixing or crustal contamination, despite the thick crust upon which they are erupted. Geochemical characteristics indicate a homogeneous source, highly enriched in trace elements, which is most consistent with derivation from long-lived subcontinental lithospheric mantle (SCLM). P-wave anisotropy tomography documents a gap between the north-subducting Indian slab and south-subducting Tarim slab directly beneath the AVB. We propose that volcanism in northwestern Tibet is associated with the progressive closure of this gap, during which shear heating of the SCLM can generate localised melting, with deep-seated faults providing a mechanism for erupted lavas to escape large-scale crustal contamination and fractionation in magma reservoirs. Thus, shear heating may provide an explanation for the restricted range of radiogenic isotope compositions from a SCLM source that should be, by its nature, heterogeneous on a large scale.