Cookies

We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Department of Earth Sciences

Profile

Publication details for Dr Geoff Nowell

Nowell, G.M, Pearson, D.G, Bell, D.R, Carlson, R.W, Smith, C. B, Kempton, P.D & Noble, S.R (2004). Hf isotope systematics of kimberlites and their megacrysts: New constraints on their source regions. Journal of Petrology 45(8): 1583-1612.

Author(s) from Durham

Abstract

Kimberlites from Southern Africa, along with their low-Cr megacrysts, have unusual Hf–Nd isotopic characteristics. Group I and Transitional kimberlites define arrays trending oblique to, and well below, the Nd–Hf isotope ‘mantle array’, defined by oceanic basalts, i.e. they have negative Hf values. Group I kimberlites have Hf values varying from –1.2 to –10.1. Low-Cr megacryst suites from individual Group I kimberlites have compositions that overlap those of their host kimberlites. The trend for all Group I kimberlite megacrysts (Hf values –1.0 to –9.0) shows a striking correspondence to that of the Group I kimberlite field. Group II kimberlites and their low-Cr megacrysts plot on or close to the mantle Nd–Hf array (Hf values 3.6 to –2.6). The data indicate a genetic link between kimberlites and the low-Cr megacryst suite. The negative Hf characteristics of Group I kimberlites and their megacrysts require a source component that is ancient (>1 Ga), and has evolved with low time-integrated Lu/Hf relative to Sm/Nd. Our preferred option is that this component originates beneath the lithosphere, from a reservoir of ancient, deeply subducted oceanic basalt that became incorporated into the convecting mantle source region for Group I and Transitional kimberlites.

References

Allegre, C. J. (2002). The evolution of mantle mixing.
Philosophical
Transactions of the Royal Society of London A 360, 2411–2431.
Allsop, H., Bristow, J. W., Smith, C. B., Brown, R., Gleadow, A. J. W., Kramers, J. D. & Garvie, O. (1989). A summary of radiometric dating methods applicable to kimberlites and related rocks. In:
Ross, J. L. (ed.) Kimberlites and Related Rocks: Their Composition, Occurrence, Origin and Emplacement. Special Publication of the Geological Society of Australia 14, 343–357.
Ballentine, C. J., Lee, D. C. & Halliday, A. N. (1997). Hafnium isotopic studies of the Cameroon line and new Hf paradoxes. Chemical Geology 139, 111–124.
Beard, A. D., Downes, H., Hegner, E. & Sablukov, S. M. (2000).
Geochemistry and mineralogy of kimberlites from the Arkhangelsk Region, N.W. Russia: evidence for transitional kimberlite magma types. Lithos 51, 47–73.
Bedini, R. M., Blichert-Toft, J., Boyet, M. & Albarede, F. (2002).
Lu–Hf isotope geochemistry of garnet–peridotite xenoliths from the Kaapvaal craton and the thermal regime of the lithosphere.
Geochimica et Cosmochimica Acta 66 (S1), A61.
Bell, D. R. & Mofokeng, S. (1998). Cr-poor megacrysts from the Frank Smith Mine and the source regions of transitional kimberlites.
Extended Abstracts 7th International Kimberlite Conference, Cape Town, 64–66.
Bell, D. R., Schulze, D. J., Read, G. H., Mattioli, G. S., Shimizu, N., Moore, R. O. & Gurney, J. J. (1995). Geochemistry of Cr-poor megacrysts from the Lace (Group II) kimberlite, S. Africa. Extended Abstracts 6th International Kimberlite Conference, Novosibirsk, 52–53.
Bizzarro, M., Simonetti, A., Stevenson, R. K. & David, J. (2002). Hf isotope evidence for a hidden mantle reservoir. Geology 30, 771–774.
Bizzi, L., Smith, C. B., DeWit, M. C. J., Armstrong, R. & Meyer, H. O. A. (1994). Mesozoic kimberlites and related alkalic rocks in south-western Sao Francisco craton, Brazil: a case for local mantle reservoirs and their interaction. In: Leonardos, O. H. & Meyer, H. O. A. (eds) Kimberlites, Related Rocks and Mantle Xenoliths.
Brasilia: CPRM, pp. 156–171.
Blichert-Toft, J. (2001). On the Lu–Hf isotope geochemistry of silicate rocks. Geostandards Newsletter 25, 41–56.
Blichert-Toft, J. & Albarede, F. (1997). The Lu–Hf geochemistry of chondrites and the evolution of the crust–mantle system. Earth and Planetary Science Letters 148, 243–258.
Blichert-Toft, J. Chauvel, C. & Albarede, F. (1997). Separation of Hf and Lu for high-precision isotope analysis of rock samples by magnetic sector-multiple collector ICP-MS. Contributions to Mineralogy and Petrology 127, 248–260.
Blichert-Toft, J., Albarede, F. & Kornprobst, J. (1999). Lu–Hf isotope systematics of garnet pyroxenites from Beni Bousera, Morocco:
Implications for basalt origin. Science 283, 1303–1306.
Blichert-Toft, J., Ionov, D. A. & Albarede, F. (2000). The nature of the sub-continental lithospheric mantle: Hf isotope evidence from garnet peridotite xenoliths from Siberia. Journal of Conference Abstracts 5, 217.
Boyd, F. R. (1989). Compositional distinction between oceanic and cratonic lithosphere. Earth and Planetary Science Letters 96, 15–26.
Carlson, R. W. & Nowell, G. M. (2001). Olivine-poor sources for mantle-derived magmas: Os and Hf isotopic evidence from potassic magmas of the Colorado Plateau. Geochemistry, Geophysics, Geosystems 2, 2000GC000128.
Carlson, R. W., Esperanca, S. & Svisero, D. P. (1996). Chemical and Os isotopic study of Cretaceous potassic rocks from southern Brazil.
Contributions to Mineralogy and Petrology 125, 393–405.
Chauvel, C, & Blichert-Toft, J. (2001). A hafnium isotope and trace element perspective on melting of the depleted mantle. Earth and Planetary Science Letters 190, 137–151.
Chauvel, C., Hofmann, A. W. & Vidal, P. (1994). HIMU-EM: The French Polynesian connection. Earth and Planetary Science Letters 110, 99–119.
Davies, G. R., Spriggs, A. J. & Nixon, P. H. (2001). A non-cognate origin for the Gibeon kimberlite megacryst suite, Namibia:
implications for the origin of Namibian kimberlites. Journal of Petrology 42, 159–172.
Dowall, D. P., Nowell, G. M., Pearson, D. G., Kjarsgaard, B. A. & Carlson, J. A. (2000). The nature of kimberlite source regions: a Hf– Nd isotope study of Slave Craton kimberlites. Journal of Conference Abstracts 5(2), 357.
Dowall, D. P., Pearson, D. G. & Nowell, G. M. (2003). Chemical preconcentration procedures for high-precision analysis of Hf–Nd–Sr isotopes in geological materials by plasma ionisation multi-collector mass spectrometry (PIMMS) techniques. In: Holland, J. G. & Tanner, S. D. (eds) Plasma Source Mass Spectrometry: Applications and Emerging Technologies. Cambridge: Royal Society of Chemistry, pp. 321–337.
Edgar, A. D. & Charbonneau, H. E. (1993). Melting experiments on a SiO2-poor, CaO-rich aphanitic kimberlite from 5–10 GPa and their bearing on sources of kimberlite magmas. American Mineralogist 78, 132–142.
Eggler, D. H., McCallum, M. E. & Smith, C. B. (1979). Megacryst assemblages in kimberlite from northern Colorado and southern
Wyoming: petrology, geothermometry–barometry and areal distribution.
In: Boyd, F. R. & Meyer, H. O. A. (eds) Kimberlites, Diatremes and Diamonds: Their Geology, Petrology and Geochemistry.
Washington, DC: American Geophysical Union, pp. 213–226.
Fraser, K. J. & Hawkesworth, C. J. (1992). The petrogenesis of group 2 ultrapotassic kimberlites from Finsch Mine, South Africa. Lithos 28, 327–345.
Girnis, A. V., Brey, G. P. & Ryabchikov, I. D. (1995). Origin of Group 1A kimberlites: fluid-saturated melting experiments at 45–55 kbar.
Earth and Planetary Science Letters 134, 283–296.
Gregoire, M., Bell, D. R. & le Roux, A. P. (2002). Trace element geochemistry of phlogopite-rich mafic mantle xenoliths: their classification and their relationship to phlogopite-bearing peridotites and kimberlites revisited. Contributions to Mineralogy and Petrology 142, 603–625.
Griffin, W. L., Pearson, N. J., Belousova, E., Jackson, S. E., van Achterbergh, E., O’Reilly, S. Y. & Shee, S. R. (2000). The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta 64, 133–148.
Gurney, J. J., Jacob, W. R. O. & Dawson, J. B. (1979). Megacrysts from the Monastery kimberlite pipe, South Africa. In: Boyd, F. R. & Meyer, H. O. A. (eds) Kimberlites, Diatremes and Diamonds: Their Geology, Petrology and Geochemistry. Washington, DC: American Geophysical Union, pp. 222–243.
Gurney, J. J., Moore, R. O. & Bell, D. R. (1998). Mineral associations and compositional evolution of the Monastery kimberlite megacrysts.
Extended Abstracts, 7th International Kimberlite Conference, Cape Town, pp. 290–292.
Haggerty, S. E. (1994). Superkimberlites: a geodynamic window to the Earth’s core. Earth and Planetary Science Letters 122, 57–69.
Hamilton, M. A., Pearson, D. G., Stern, R. A. & Boyd, F. R.
(1998). Constraints on MARID petrogenesis: SHRIMP II U–Pb zircon evidence for pre-eruption metasomatism at Kampfersdam.
Extended Abstracts 7th International Kimberlite Conference, Cape Town, 296–298.
Harte, B. (1983). Mantle peridotites and processes—the kimberlite sample. In: Hawkesworth, C. J. & Norry, M. J. (eds) Continental Basalts and Mantle Xenoliths. Nantwich: Shiva, pp. 46–91.
Harte, B. (1999). Lower mantle mineral associations in diamonds from Sao Luiz, Brazil. In: Fei, Y., Bertka, C. M. & Mysen, B. O. (eds) Mantle Petrology: Field Observations and High Pressure Experimentation Special. Publication of the Geochemical Society 6, 57–78.
Harte, B. & Gurney, J. J. (1981). The mode of formation of chromium poor megacryst suites from kimberlites. Journal of Geology 89, 749–753.
Hofmann, A. W. (1997). Mantle geochemistry: the message from oceanic volcanism. Nature 385, 219–229.
Hops, J., Gurney, J. J. & Harte, B. (1992). The Jagersfontein Cr-poor megacryst suite—towards a model for megacryst petrogenesis.
Journal of Volcanology and Geothermal Research 50, 143–160.
Ionov, D. A. & Weiss, D. (2002). Hf isotope composition of mantle
peridotites: first results and inferences for the age and evolution of the lithospheric mantle. Abstracts, 4th International Conference on Orogenic Lherzolites and Mantle processes. Japan: Semani, pp. 56–57.
Jacob, D. E., Bizimis, M. & Salters, V. J. M. (2002). Lu–Hf isotopic systematics of subducted ancient oceanic crust: Roberts Victor eclogites. Geochimica et Cosmochimica Acta 66(S1), A360.
Janney, P. E., le Roex, A. P., Carlson, R. W. & Viljoen, K. S. (2002). A chemical and multi-isotope study of the western Cape olivine melilitite province, South Africa: implications for the sources of kimberlites and the origin of the HIMU signature in Africa. Journal of Petrology 43, 2339–2370.
Johnson, C. M. & Beard, B. L. (1993). Evidence from hafnium isotopes for ancient sub-oceanic mantle beneath the Rio Grande rift. Nature 362, 441–444.
Jones, R. A. (1987). Strontium and neodymium isotopic and rare earth element evidence for the genesis of megacrysts in kimberlites of southern Africa. In: Nixon, P. H. (ed.) Mantle Xenoliths. New York:
Wiley, pp. 711–724.
Kato, T., Ringwood, A. E. & Irifune, T. (1988a). Constraints on element partition coefficients between MgSiO3 perovskite and liquid determined by direct measurements. Earth and Planetary Science Letters 90, 65–68.
Kato, T., Ringwood, A. E. & Irifune, T. (1988b). Experimental determination of element partitioning between silicate perovskites, garnets and liquids: constraints on early differentiation of the mantle.
Earth and Planetary Science Letters 89, 123–145.
Kesson, S. E., Ringwood, A. E. & Hibberson, W. O. (1994). Kimberlite melting relations revisited. Earth and Planetary Science Letters 121, 261–262.
Konzett, J., Armstrong, R. A., Sweeney, R. J. & Compston, W. (1998).
The timing of MARID metasomatism in the Kaapvaal mantle: an ion probe study of zircons from MARID xenoliths. Earth and Planetary Science Letters 160, 133–145.
Kramers, J. C. & Smith, C. B. (1983). A feasibility study of U–Pb and Pb–Pb dating of kimberlites using groundmass mineral and wholerock fractions. Chemical Geology, Isotope Geosciences 1, 23–38.
Kramers, J. D., Smith, C. B., Lock, N. P., Harmon, R. S. & Boyd, F. R.
(1981). Can kimberlites be generated from an ordinary mantle?
Nature 291, 53–56.
le Roux, A. P. (1986). Geochemical correlation between Southern African kimberlites and South Atlantic hot spots. Nature 324, 243–245.
Ludwig, K. R. (2003). Isoplot 3.0. A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication 4.
Mahotkin, I. L., Gibson, S. A., Thompson, R. N., Zhuravlev, D. Z. & Zherdev, P. U. (2000). Late Devonian diamondiferous kimberlite and alkaline picrite (proto-kimberlite?) magmatism in the Arkhangelsk Region, N.W. Russia. Journal of Petrology 41, 201–227.
McDonald, I., DeWit, M. J., Smith, C. B., Bizzi, L. A. & Viljoen, K. S.
(1995). The geochemistry of the platinum group elements in Brazilian and southern African kimberlites. Geochimica et Cosmochimica Acta 59, 2883–2903.
Minarik, W. G., Hauri, E. H. & Fei, Y. (1998). Direct determination of trace element partitioning between silicate perovskite and peridotite melt. EOS (Transactions, American Geophysical Union) 79, F1010.
Mitchell, R. H. (1986). Kimberlites: Mineralogy, Geochemistry and Petrology.
New York: Plenum.
Mitchell, R. H. (1995). Kimberlite, Orangeites and Related Rocks. New
York:
Plenum, 410 pp.
Mitchell, R. H. (2003). Experimental studies at 6–12 GPa of the Ondermatjie hypabyssal kimberlite. Extended Abstracts of the 8th International Kimberlite Conference, Victoria, 020.
Moore, A. E. & Lock, N. P. (2001). The origin of mantle-derived megacrysts and sheared peridotites: evidence from kimberlites in the northern Lesotho–Orange Free State (South Africa) and Botswana pipe clusters. South African Journal of Geology 104, 23–38.
Moore R. O., Griffin W. L., Gurney J. J., Ryan C. G., Cousens D. R., Shee S. H. & Suter G. F. (1992). Trace element geochemistry of ilmenite megacrysts from the Monastery kimberlite, South Africa.
Lithos 29, 1–16.
Nixon, P. H. & Boyd, F. R. (1973). The discrete nodule association in kimberlites in northern Lesotho. In: Nixon, P. H. (ed.) Lesotho Kimberlites. Maseru: Cape and Transvaal, pp. 67–75.
Nowell, G. M. & Parrish, R. (2001). Simultaneous acquisition of isotope compositions and parent/daughter ratios by non-isotope dilution solution-mode plasma ionisation multi-collector mass spectrometry
(PIMMS) In: Holland, J. G. & Tanner, S. D. (eds) Plasma Source mass
Spectrometry: The New Millenium. Special Publication of the Royal Society of Chemistry 267, 298–310.
Nowell, G. M. & Pearson, D. G. (1998). Hf isotope constraints on the genesis of kimberlitic megacrysts: evidence for a deep mantle component in kimberlites. Extended Abstracts 7th International Kimberlite Conference, Cape Town, pp. 634–636.
Nowell, G. M., Pearson, D. G., Irving, A. J. & Turner, S. P. (1998a). A Hf isotope study of lamproites: Implications for their origins and relationship to kimberlites. Extended Abstracts 7th International Kimberlite Conference, Cape Town, pp. 637–639.
Nowell, G. M., Kempton, P. D. & Pearson, D. G. (1998b). Hf isotope systematics of kimberlites: Relevance to terrestrial Hf–Nd systmetics:
Extended Abstracts 7th International Kimberlite Conference, Cape Town, pp. 628–630.
Nowell, G. M., Kempton, P. D., Noble, S. R., Fitton, J. G., Saunders, A. D., Mahoney, J. J. & Taylor, R. N. (1998c). High precision Hf isotope measurements of MORB and OIB by thermal ionisation mass spectrometry: insights into the depleted mantle.
Chemical Geology 149, 211–233.
Nowell, G. M., Pearson, D. G., Kempton, P. D., Noble, S. R. & Smith, C.B. (1999). Origins of kimberlites: a Hf isotope perspective.
In: Gurney, J. J., Gurney, J. L., Pascoe, M. D. & Richardson, S. H.
(eds) Proceedings 7th International Kimberlite Conference, Cape Town.
Goodwood, S. Africa: National Book Printer, pp. 616–624.
Nowell, G. M., Pearson, D. G., Ottley, C. J., Schweiters, J. & Dowall, D. (2003a). Long-term performance characteristics of a plasma ionisation multi-collector mass spectrometer (PIMMS): the ThernoFinnigan Neptune. Plasma Source Mass Spectrometry. In:
Holland, J. G. & Tanner, S. D. (eds) Plasma Source Mass Spectrometry:
Applications and Emerging Technologies. Cambridge: Royal Society of Chemistry, pp. 307–320.
Nowell, G. M., Pearson, D. G. & Irving, A. J. (2003b). Lu–Hf and Re–Os systematics of lamproites: constraints on their petrogenesis.
Geophysical Research Abstracts 5, 05458.
Nowell, G. M., Pearson, D. G., Jacob, D. J., Spetsius, Z. V., Nixon, P.
H.
& Haggerty, S. E. (2003c). The origin of alkremites and related rocks:
a Lu–Hf, Rb–Sr and Sm–Nd isotope study. Extended Abstracts 8th International Kimberlite Conference, Victoria, FLA 0271.
Ohtani, E., Yurimoto, H., Sagawa, T. & Kato, T. (1995). Element partitioning between Mg–SiO3 perovskite, magma, and molten iron:
constraints for the earliest processes of the Earth–Moon system. In:
Yakutaki, T. (ed.) The Earth’s Central Part: Its Structure and Dynamics.
Tokyo: Terra Scientific Publishing Company, pp. 287–300.
Ottley, C. J., Pearson, D. G. & Irvine, G. J. (2003). A routine method for the dissolution of geological samples for the analysis of REE and trace elements via ICP-MS. In: Holland, J. G. & Tanner, S. D. (eds) Plasma Source Mass Spectrometry: Applications and Emerging Technologies.
Cambridge: Royal Society of Chemistry, pp. 221–230.
Pearson, D. G. (1999a). The age of continental roots. Lithos 48, 171–194.
Pearson, D. G. (1999b). Evolution of cratonic lithospheric mantle: an isotopic perspective. In: Fei, Y., Bertka, C. M. & Mysen, B. O. (eds) Mantle Petrology: Field Observations and High Pressure Experimentation Special Publication of the Geochemical Society 6, 57–78.
Pearson, D. G. & Nowell, G. M. (2002). The continental lithospheric
mantle: characteristics and significance as a mantle reservoir.
Philosophical Transactions of the Royal Society of London A 360, 2383–2410.
Pearson, D. G. & Nowell, G. M. (2003). Dating mantle differentiation:
a comparison of the Lu–Hf, Re–Os and Sm–Nd isotope systems in the Beni Bousera peridotite massif and constraints on the Nd–Hf composition of the lithospheric mantle. Geophysical Research Abstracts 5, 05430.
Pearson, D. G. & Nowell, G. M. (2004). Re–Os and Lu–Hf isotope constraints on the origin and age of pyroxenites from the Beni Bousera peridotite massif: implications for mixed peridotite– pyroxenite mantle sources. Journal of Petrology 45, 439–455.
Pearson, D. G., Rogers, N. W., Irving, A. J., Smith, C. B. & Hawkesworth, C. J. (1995). Source regions of kimberlites and
lamproites: constraints from Re–Os isotopes. Extended Abstracts, 6th International Kimberlite Conference, Novosibirsk, 430–432.
Pearson, D. G., Rogers, N. W., Irving, A. J., Smith, C. B. & Hawkesworth, C. J. (1996). Re–Os isotope constraints on the sources of kimberlites and lamproites. Journal of Conference Abstracts 1, 453.
Pearson, D. G., Canil, D. & Shirey, S. B. (2003). Mantle samples included in volcanic rocks: xenoliths and diamonds. In: Turekian, K. K.
& Holland, H. D. (eds) Treatise on Geochemistry, Volume 2: The Mantle and Core, Amsterdam: Elsevier.
Ringwood, A. E. (1989). Slab–mantle interactions: 3. Petrogenesis of intraplate magmas and structure of the upper mantle. Chemical Geology 82, 187–207.
Royse, K. R., Kempton, P. D. & Darbyshire, D. P. F. (1998).
Procedure for the analysis for rubidium–strontium and samarium– neodymium isotopes at the NERC Isotope Geosciences Laboratory.
NERC Isotope Geosciences Laboratory Report Series 121, 28 pp.
Rudnick, R. L., Barth, M. G., Horn, I. & McDonough, W. F. (2000).
Rutile-bearing refractory ecologites; missing link between continents and depleted mantle. Science 287, 278–281.
Salters, V. J. & White, W. M. (1998). Hafnium isotope constraints on mantle evolution. Chemical Geology 145, 447–460.
Salters, V. J. M. & Zindler, A. (1995). Extreme 176Hf/177Hf in the suboceanic mantle. Earth and Planetary Science Letters 129, 13–30.
Scherer, E., Munker, C. and Mezger, K. (2001). Calibration of the lutetium–hafnium clock. Science 293, 683–687.
Schmidberger, S. S., Simonetti, A. & Francis, D. (2002). Probing Archean lithosphere using the Lu–Hf systematics of peridotite xenoliths from Somerset Island kimberlites, Canada. Earth and Planetary Science Letters 197, 245–259.
Sharp, W. E. (1974). A plate tectonic origin for diamond-bearing kimberlites. Earth and Planetary Science Letters 21, 351–354.
Simon, N. S. C., Carlson, R. W., Pearson, D. G. & Davies, G. R.
(2002). The Lu–Hf isotope composition of cratonic lithosphere:
disequilibrium between garnet and clinopyroxene in kimberlite xenoliths. Geochimica et Cosmochimica Acta 66 (S1), A717.
Simon, N. S. C., Irvine, G. J., Davies, G. R., Pearson, D. G. & Carlson, R. W. (2003). The origin of garnet and clinopyroxene in ‘depleted’ Kaapvaal peridotites. Lithos 71, 289–322.
Skinner, E. M. W., Smith, C. B., Viljoen, K. S. & Clarke, T. C. (1994).
The petrography, tectonic setting and emplacement ages of kimberlites in the South western Border Region of the Kaapvaal Craton, Prieska area, South Africa. In: Leonardos, O. H. & Meyer, H. O. A. (eds) Kimberlites, Related Rocks and Mantle Xenoliths.
Brasilia: CPRM, pp. 80–95.
Smith, C. B. (1983). Pb–Sr and Nd isotopic evidence for sources of southern African Cretaceous kimberlites. Nature 304, 51–54.
Smith, C. B., Gurney, J. J., Skinner, E. M. W., Clement, C. R. & Ebrahim, N. (1985). Geochemical character of southern African kimberlites: a new approach based on isotopic constraints.
Transactions of the Geological Society of South Africa 88, 267–280.
Smith, C. B., Schulze, D. J., Bell, D. R. & Viljoen, K. S. (1995).
Bearing of the subcalcic Cr-poor megacryst suite on kimberlite petrogenesis and lithospheric structure. Extended Abstracts, 6th International Kimberlite Conference, Novosibirsk, 546–548.
Spriggs, A. J. (1988). A geochemical and isotopic study of kimberlites from Namibia. Ph.D. thesis, University of Leeds.
Thirlwall, M. (1991). Long-term reproducibility of multicollector Sr and Nd isotope ratio analysis. Chemical Geology 94, 85–104.
Vervoort, J., Patchett, P. J., Blichert-Toft, J. & Albarede, F. (1999).
Relationships between Lu–Hf and Sm–Nd isotopic systems in the global sedimentary system. Earth and Planetary Science Letters 168, 79–99.
Wiedenbeck, M., Alle, P., Corfu, F., Griffin, W. L., Meier, M., Oberli, F., Quadt, A. V., Roddick, J. C. & Spiegel, W. (1995). Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses. Geostandards Newsletter 19, 1–23.
Yaxley, G. M., Crawford, A. J. & Green, D. H. (1991). Evidence for carbonatite metasomatism in spinel peridotite xenoliths from western Victoria, Australia. Earth and Planetary Science Letters 107, 305–317.