We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Department of Earth Sciences


Publication details for Dr Geoff Nowell

Pearson, D.G. & Nowell, G.M (2002). The continental lithospheric mantle: characteristics and significance as a mantle reservoir. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 360(1800): 2383-2410.

Author(s) from Durham


The continental lithospheric mantle (CLM) is a small-volumed (ca. 2.5% of the total mantle), chemically distinct mantle reservoir that has been suggested to play a role in the source of continental and oceanic magmatism. It is our most easily identifiable reservoir for preserving chemical heterogeneity in the mantle. Petrological and geophysical constraints indicate that the maximum depth of the CLM is ca. 250 km. There is a clear secular variation of CLM composition, such that CLM formed in the last 2 Gyr is less depleted and therefore less dynamically stable than ancient CLM formed in the Archean. We present new trace-element data for kimberlite-hosted lithospheric peridotites and metasomites. These data, combined with other data for spinel peridotites from non-cratonic regions, show that neither hydrous nor anhydrous lithospheric mantle xenoliths make suitable sources for continental or oceanic basalts. Addition of a hydrous phase, either amphibole or phlogopite, to depleted peridotite results in positive Nb and Ti anomalies that are the opposite of those predicted for some flood-basalt sources on the basis of their trace-element abundances. Overall, the Sr and Nd isotopic composition of cratonic and non-cratonic CLM is close to bulk Earth, with cratonic CLM showing small numbers of extreme compositions. Thus, while the CLM is certainly ancient in many locations, its average composition is not significantly 'enriched' over primitive upper mantle, in terms of either radiogenic isotopes or trace elements. These characteristics, plus a change in lithospheric chemistry with depth, indicate that the elemental and isotopic composition of lithospheric mantle likely to be re-incorporated into convecting mantle via delamination/thermal erosion processes is probably not very distinct from that of the convecting mantle. These observations lead us to question the requirement for CLM participation in the source of oceanic magmas and to promote consideration of a mantle that is chemically heterogeneous on all scales. Hf and Nd isotope compositions identify a distinctive source component in deeply derived alkaline volcanics associated with continents. This component cannot be constrained to the CLM but may originate from a deeper reservoir of ancient, subducted oceanic crust stored in the mantle.


Abbott, D., Sparks, D., Herzberg, C., Mooney, W., Nikishin, A.
& Zhang, Y. S. 2000 Quantifying
Precambrian crustal extraction: the root is the answer. Tectonophysics 322, 163 190.
Alard, O., Griffin, W. L., Lorand, J. P., Jackson, S. E. & O Reilly, S.
Y. 2000 Non-chondritic
distribution of the highly siderophile elements in mantle sulphides.
Nature 407, 891 894.
Albar`ede, F. F. & van der Hilst, R. D. 2002 Zoned mantle convection.
Phil. Trans. R. Soc. Lond.
A360, 2569 2592.
All`egre, C. J. & Turcotte, D. L. 1986 Implications of a two component marble-cake mantle.
Nature 323, 123 127.
Anderson, D. L. 1994 The sublithospheric mantle as a source of continental flood basalts: the case against the continental lithosphere and plume head reservoirs. Earth Planet. Sci. Lett.
123, 269 280.
Arndt, N. T. & Christensen, U. 1992 The role of lithospheric mantle in flood volcanism: thermal and geochemical constraints. J. Geophys. Res. 97, 10 967 10 981.
Beard, B. L. & Johnson, C. M. 1993 Hf isotope composition of late Cenozoic basaltic rocks from northwestern Colorado, USA: new constraints on mantle enrichment processes. Earth Planet.
Sci. Lett. 119, 495 509.
Blichert-Toft, J. & Albar`ede, F. 1997 The Lu Hf isotope geochemistry of chondrites and the evolution of the mantle crust system. Earth Planet. Sci. Lett. 148, 243 258.
Bodinier, J.-L., Merlet, C., Bedini, R. M., Simien, F., Remaidi, M. & Garrido, C. J. 1996 Distribution of niobium, tantalum, and other highly incompatible trace elements in the lithospheric
mantle: the spinel paradox. Geochim. Cosmochim. Acta 60, 545 550.
Boyd, F. R. 1989 Compositional distinction between oceanic and cratonic lithosphere. Earth Planet. Sci. Lett. 96, 15 26.
Boyd, F. R. & Gurney, J. J. 1986 Diamonds and the African lithosphere.
Science 232, 472 477.
Burton, K. W., Schiano, P., Birk, J. L., All`egre, C. J., Rehkamper, M., Halliday, A. N. & Dawson, J. B. 2000 The distribution and behaviour of rhenium and osmium amongst mantle minerals and the age of the lithospheric mantle beneath Tanzania. Earth Planet. Sci. Lett.
183, 93 106.
Carlson, R. W., & Nowell, G. M. 2001 Olivine-poor sources for mantle-derived magmas: Os and Hf isotopic evidence from potassic magmas of the Colorado Plateau.
Geochem. Geophys.
Geosystems 2, 2000GC000128.
Carlson, R. W., Pearson, D. G., Boyd, F. R., Shirey, S. B., Irvine, G., Menzies, A. H. & Gurney, J. J. 1999 Regional age variation of the southern African mantle:
significance for models
of lithospheric mantle formation. In Proc. 7th Int. Kimberlite Conf., Cape Town (ed. J. G.
Gurney, J. L. Gurney, M. D. Pascoe & S. H. Richardson), pp. 99 108. Cape
Town: Redwood
Chesley, J. T., Rudnick, R. L. & Lee, C. T. 1999 Re Os systematics of mantle xenoliths from the East African Rift: age, structure and history of the Tanzanian craton.
Geochim. Cosmochim.
Acta 63, 1203 1217.
Doin, M. P., Fleitout, L. & McKenzie, D. P. 1996 Geoid anomalies and the structure of continental and oceanic lithospheres. J. Geophys. Res. 101, 16119 16135.
Doin, M. P., Fleitout, L. & Christensen, U. 1997 Mantle convection and stability of depleted and undepleted continental lithosphere. J. Geophys. Res. 102, 2771 2787.
Dowall, D. P., Nowell, G. M., Pearson, D. G., Kjarsgaard, B. A. & Carlson, J. A. 2000 The nature of kimberlite source regions: a Hf Nd isotope study of Slave Craton kimberlites. J.
Conf. Abstracts 5, 357.
Eggler, D. H., Meen, J. K., Welt, R., Dudas, F. O., Furlong, K. P., McCallum, M. E. & Carlson, R. W. 1988 Tectonomagmatism of the Wyoming Province. Colorado School of Mines Quarterly 83, 25 40.
Erlank, A. J., Waters, F. G., Hawkesworth, C. J., Haggerty, S. E., Allsopp, H. L., Rickard, R. S. & Menzies, M. A. 1987 Evidence for mantle metasomatism in peridotite nodules from the Kimberley pipes, South Africa. In Mantle metasomatism (ed. M. A.
Menzies & C. J.
Hawkesworth), pp. 221 311. Academic.
Finnerty, A. A. & Boyd, F. R. 1987 Thermobarometry for garnet peridotite xenoliths : a basis for upper mantle stratigraphy. In Mantle xenoliths (ed. P. H. Nixon), pp.
381 402. Wiley.
Forte, A. M. & Perry, H. K. C. 2000 Geodynamic evidence for a chemically depleted continental tectosphere. Science 290, 1940 1943.
Fraser, K. J., Hawkesworth, C. J., Erlank, A. J., Mitchell, R. H. & Scott-Smith, B. H. 1985 Sr, Nd and Pb isotope and minor element geochemistry of lamproites and kimberlites. Earth Planet. Sci. Lett. 76, 57 70.
Grand, S. P. 1987 Tomographic inversion for shear velocity beneath the North American plate.
J. Geophys. Res. 92, 14 065 14 090.
Gregoire, M., Bell, D. R., Le Roux, A. P. 2002 Trace element geochemistry of phlogopiterich mafic mantle xenoliths: their classification and their relationship to phlogopite-bearing peridotites and kimberlites revisited. Contrib. Mineral. Petrol. 142, 603 625.
Griffin, W. L., O Reilly, S. Y. & Ryan, C. G. 1999 The composition and origin of sub-continental lithospheric mantle. In Mantle petrology: field observations and high pressure experimentation (ed. C. M. Bertka, B. O. Mysen & Y. Fei). Spec. Pub. Geochem. Soc. no. 6, pp. 13 45.
Griselin, M., Arndt, N. T. & Baragar, W. R. A. 1996 Plume lithosphere interaction and crustal contamination during formation of Coppermine River basalts, Northwest Territories, Canada.
Can. J. Earth Sci. 34, 958 975.
Handler, M. R., Bennet, V. C. & Esat, T. Z. 1997 The persistence of off-cratonic lithospheric
mantle: Os isotopic systematics of variably metasomatised southeast Australian xenoliths.
Earth Planet. Sci. Lett. 151, 61 75.
Hanghoj, K., Keleman, P. B., Bernstein, S., Blustztajn, J. & Frei, R. 2001 Geochem. Geophys.
Geosyst. 2, 2000GC000085.
Harte, B., Hunter, R. H. & Kinny, P. D. 1993 Melt geometry, movement and crystallisation, in relation to mantle dykes, veins and metasomatism. In Melting and melt movement in the Earth (ed. K. G. Cox, D. McKenzie & R. S. White), pp. 1 21. Oxford University Press.
Hawkesworth, C. J., Erlank, A. J., Marsh, J. S., Menzies, M. A. & v.
Calsteren, P. 1983 Evolution
of the continental lithosphere: evidence from volcanics and xenoliths from southern Africa. In Continental basalts and mantle xenoliths (ed. C. J. Hawkesworth. & M. J.
Norry), pp. 111
138. Shiva.
Hawkesworth, C. J., Pearson, D. G. & Turner, S. P. 1999 Chemical and temporal variations in the Earth s lithosphere. Phil. Trans. R. Soc. Lond. A357, 647 669.
Hawkesworth, C. J., Gallagher, K., Kirstein, L., Mantovani, M. S. M., Peate, D. W. & Turner, S. P. 2000 Tectonic controls on magmatism associated with continental break up: an example from the Parana-Etendeka Province. Earth Planet. Sci. Lett. 179, 335 349.
Hergt, J. M., Peate, D. W. & Hawkesworth, C. J. 1991 The petrogenesis of Mesozoic Gondwana low-Ti flood basalts. Earth Planet. Sci. Lett. 105, 134 148.
Ionov, D. A. & Hofmann, A. W. 1995 Nb Ta-rich mantle amphiboles and
micas: implications for
subduction-related metasomatic trace element fractionations. Earth Planet.
Sci. Lett. 131,
341 356.
Irvine, G. J., Pearson, D. G. & Carlson, R. W. 2001 Lithospheric mantle evolution in the Kaapvaal craton: a Re Os isotope study of peridotite xenoliths from Lesotho kimberlites.
Geophys. Res. Lett. 28, 2505 2508.
Jaupart, C. & Mareschal, J. C. 1999 The thermal structure and thickness of continental roots.
Lithos 48, 93 114.
Jordan, T. H. 1975 The continental tectosphere. Rev. Geophys. Space Phys.
13, 1 13.
James, D. E., Fouch, M. J., VanDecar, J. C., van der Lee, S. & Kaapvaal Seismic Group 2001 Tectospheric structure beneath southern Africa. Geophys. Res. Lett. 28, 2485 2488.
Kramers, J. D. 1977 Lead and strontium isotopes in Cretaceous kimberlites and mantle-derived xenoliths from southern Africa. Earth Planet. Sci. Lett. 34, 419 431.
Lee, C., Yin, Q., Rudnick, R. L., Chesley, J. T. & Jacobsen, S. B. 2000 Osmium isotope evidence for Mesozoic removal of Lithospheric mantle beneath the Sierra Nevada, California. Science 289, 1912 1916.
Lee, C., Rudnick, R. L. & Jacobsen. S. 2001 Preservation of ancient and fertile lithospheric mantle beneath the southwestern United States. Nature 411, 69 73.
le Roex, A. P. 1986 Geochemical correlation between Southern African kimberlites and South Atlantic hot spots. Nature 324, 243 245.
McDonough, W. F. 1990 Constraints on the composition of the continental lithospheric mantle.
Earth Planet. Sci. Lett. 101, 1 18.
McDonough, W. M. 1991 Partial melting of subducted oceanic crust and isolation of its residual eclogite lithology Proc. R. Soc. Lond. A335, 407 418.
McDonough, W. M. & Sun, S. S. 1995 The composition of the Earth. Chem.
Geol. 120, 223 253.
McKenzie, D. & Bickle, M. J. 1988 The volume and composition of melt generated by extension of the lithosphere. Earth Planet. Sci. Lett. 29, 625 79.
McKenzie, D. P. & O Nions, R. K. 1983 Mantle reservoirs and oceanic island basalts. Nature 301, 229 231.
McKenzie, D. P. & O Nions, R. K. 1995 The source regions of ocean island basalts. J. Petrol.
36, 133 159.
Meisel, T., Walker, R. J., Irving, A. J. & Lorand, J.-P. 2001 Osmium isotopic compositions of mantle xenoliths: a global perspective. Geochim. Cosmochim. Acta 65, 1311 1323.
Menzies, M. A. 1992 A re-appraisal of the continental lithosphere as a reservoir for CFB magmatism.
In Magmatism and continental break-up (ed. B. Storey). Geological Society of London, Special Publication, no. 68, pp. 31 40.
Menzies, M. A. (ed.) 1990 Archaean, proterozoic and phanerozoic lithospheres. In Continental mantle, pp. 67 86. Clarendon.
Menzies, M. A. & Dupuy, C. 1991 Orogenic massifs: protolith, process and provenance. In Orogenic lherzolites and mantle processes. J. Petrol. (special volume), 1 16.
Menzies, M. & Murthy, R. V. 1980 Enriched mantle: Nd and Sr isotopes in diopsides from kimberlite nodules. Nature 283, 634 636.
Menzies, M. A. & Xu, Y. 1998 Geodynamics of the North China Craton. In Mantle dynamics and plate interactions in East Asia (ed. M. Flower, S. L. Chung, C. H. Lo & T. Y. Lee), vol. 27, pp. 155 165. American Geophysical Union.
Molnar, P., England, P. C. & Martinod, J. 1993 Mantle dynamics, uplift of the Tibetan Plateau and the Indian Monsoon. Rev. Geophys. 31, 357 396.
Nixon, P. H. 1987 Mantle xenoliths. Wiley.
Nowell, G. M., Pearson, D. G., Kempton, P. D., Noble, S. R. & Smith, C. B.
1999a Origins of
kimberlites: a Hf isotope perspective. In Proc. 7th Int. Kimberlite Conf.
(ed. J. J. Gurney,
J. L. Gurney, M. D. Pascoe & S. H. Richardson), pp. 616 624. Goodwood, South Africa:
National Book Printers.
Nowell, G. M., Pearson, D. G. & Kempton, P. D. 1999b Hafnium isotopic systematics of kimberlites, lamproites and megacrysts: implications for mantle reservoirs and the composition of bulk silicate Earth. In 9th Annual V. M. Goldschmidt Conference, Lunar and Planetary Institute, Houston, TX, LPI contribution no. 971, pp. 211 212.
Nowell, G. M., Pearson, D. G., Kempton, P. D., Noble, S. R., Carlson, R.
W., Smith, C. B.,
Bell, D. R. & Zartman, R. E. 2002 Lu Hf isotope systematics of kimberlites and megacrysts:
evidence for a deep mantle contribution. J. Petrol. (In the press.) Pearson, D. G. 1999a The age of continental roots. Lithos 48, 171 194.
Pearson, D. G. 1999b Evolution of cratonic lithospheric mantle: an isotopic perspective. In Mantle petrology: field observations and high pressure experimentation (ed. C. M. Bertka, B. O. Mysen & Y. Fei). Geochemical Society Special Publication no. 6, pp.
57 78.
Pearson, D. G., Davies, G. R. & Nixon, P. H. 1993 Geochemical constraints on the petrogenesis of diamond facies pyroxenites from the Beni Bousera peridotite massif, north Morocco. J.
Petrol. 34, 125 172.
Pearson, D. G., Irvine, G. J., Carlson, R. W., Kopylova, M. G. & Ionov, D.
A. 2002 The
development of lithospheric mantle keels beneath the earliest continents:
time constraints
using PGE and Re Os isotope systematics. In The early Earth (ed. M.
Fowler, C. J. Ebinger
& C. J. Hawkesworth). Geological Society of London Special Publication, no. 199. (In the
Pearson, D. G., Shirey, S. B., Carlson, R. W., Boyd, F. R., Pokhilenko, N.
P. & Shimizu, N.
1995 Re-Os, Sm-Nd and Rb-Sr isotope evidence for thick Archean lithospheric mantle beneath the Siberia craton modified by multi-stage metasomatism. Geochim.
Cosmochim. Acta 59,
959 977.
Peslier, A. H., Reisberg, L. R., Ludden, J. & Francis, D. 2000 Os isotope systematics in mantle
xenoliths: age constraints on the Canadian Cordillera lithosphere. Chem.
Geol. 166, 85 101.
Reisberg, L. R. & Zindler, A. 1986 Extreme isotopic variations in the upper mantle: evidence from Ronda. Earth Planet. Sci. Lett. 81, 29 45.
Richardson, S. H., Gurney, J. J., Erlank, A. J. & Harris, J. W. 1984 Origin of diamonds in old enriched mantle. Nature 310, 198 202.
Roy-Barman, M. & All`egre, C. J. 1995 187Os/186Os in oceanic island
basalts: tracing oceanic
crust recycling in the mantle. Earth Planet. Sci. Lett. 129, 145 161.
Rudnick, R. L. & Nyblade, A. 1999 The thickness and heat production of Archean lithosphere:
constraints from xenolith thermobarometry and surface heat flow. In Mantle
petrology: field
observations and high pressure experimentation (ed. C. M. Bertka, B. O.
Mysen & Y. Fei),
Geochemical Society Special Publication no. 6, pp. 3 12.
Rudnick, R. L., Barth, M. G., Horn, I. & McDonough, W. F. 2000 Rutile-bearing refractory
eclogites: missing link between continents and depleted mantle. Science 287, 278 281.
Schaefer, B. F., Turner, S. P., Parkinson, I. J. & Rogers, N. W. 2001 A combined Os, U-series, Sr, Nd & Pb isotopic study of the Azores. J. Conf. Abstr. 6, 452.
Schulze, D. J. 1989 Constraints on the abundance of eclogite in the upper mantle. J. Geophys.
Res. 94, 4205 4212.
Simons, F. J., Zielhuis, A. & van der Hilst, R. D. 1999 The deep structure of the Australian continent from surface wave tomography. Lithos 48, 17 43.
Smith, C. B. 1983 Pb, Sr and Nd isotopic evidence for sources of southern African Cretaceous kimberlites. Nature 304, 51 54.
Snow, J. E. & Reisberg, L. 1995 Erratum of Os isotopic systematics of the MORB mantle:
results from altered abyssal peridotites . Earth Planet. Sci. Lett. 136, 723 733.
Tainton, K. M. & McKenzie, D. P. 1994 The generation of kimberlites, lamproites and their source rocks. J. Petrol. 35, 787 817.
Thompson, R. N., Morrison, M. A., Hendry, G. L. & Parry, S. J. 1983 Continental flood basalts. . . arachnids rule OK? In Continental flood basalts and mantle xenoliths (ed. C. J.
Hawkesworth & M. J. Norry), pp. 158 186. Nantwich: Shiva.
Vervoort, J. D., Patchett, P. J., Blichert-Toft, J. & Albar`ede, F. 1999 Relationships between Lu Hf and Sm Nd isotopic systems in the global sedimentary system.
Earth Planet. Sci. Lett.
168, 79 99.