Cookies

We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Department of Earth Sciences

Profile

Publication details for Dr Chris Ottley

Thompson, R.N, Ottley, C.J, Smith, P.M, Pearson, D.G, Dickin A.P, Morrison, M.A, Leat, P.T & Gibson, S.A (2005). Source of the quaternary alkalic basalts, picrites and basanites of the Potrillo Volcanic Field, New Mexico, USA: lithosphere or convecting mantle? Journal of Petrology 46(8): 1603-1643.

Author(s) from Durham

Abstract

The <80 ka basalts–basanites of the Potrillo Volcanic Field (PVF) form scattered scoria cones, lava flows and maars adjacent to the New Mexico–Mexico border. MgO ranges up to 12·5%; lavas with MgO < 10·7% have fractionated both olivine and clinopyroxene. Cumulate fragments are common in the lavas, as are subhedral megacrysts of aluminous clinopyroxene (with pleonaste inclusions) and kaersutitic amphibole. REE modelling indicates that these megacrysts could be in equilibrium with the PVF melts at 1·6–1·7 GPa pressure. The lavas fall into two geochemical groups: the Main Series (85% of lavas) have major- and trace-element abundances and ratios closely resembling those of worldwide ocean-island alkali basalts and basanites (OIB); the Low-K Series (15%) differ principally by having relatively low K2O and Rb contents. Otherwise, they are chemically indistinguishable from the Main Series lavas. Sr- and Nd-isotopic ratios in the two series are identical and vary by scarcely more than analytical error, averaging 87Sr/86Sr = 0·70308 (SD = 0·00004) and 143Nd/144Nd = 0·512952 (SD=0·000025). Such compositions would be expected if both series originated from the same mantle source, with Low-K melts generated when amphibole remained in the residuum. Three PVF lavas have very low Os contents (<14 ppt) and appear to have become contaminated by crustal Os. One Main Series picrite has 209 ppt Os and has a Os value of +13·6, typical for OIB. This contrasts with published 187Os/188Os ratios for Kilbourne Hole peridotite mantle xenoliths, which give mostly negative Os values and show that Proterozoic lithospheric mantle forms a thick Mechanical Boundary Layer (MBL) that extends to 70 km depth beneath the PVF area. The calculated mean primary magma, in equilibrium with Fo89, has Na2O and FeO contents that give a lherzolite decompression melting trajectory from 2·8 GPa (95 km depth) to 2·2 GPa (70 km depth). Inverse modelling of REE abundances in Main Series Mg-rich lavas is successful for a model invoking decompression melting of convecting sub-lithospheric lherzolite mantle (Nd = 6·4; Tp 1400°C) between 90 and 70 km. Nevertheless, such a one-stage model cannot account for the genesis of the Low-K Series because amphibole would not be stable within convecting mantle at Tf 1400°C. These magmas can only be accommodated by a three-stage model that envisages a Thermal Boundary Layer (TBL) freezing conductively onto the 70 km base of the Proterozoic MBL during the 20 Myr tectonomagmatic quiescence before PVF eruptions. As it grew, this was veined by hydrous small-fraction melts from below. The geologically recent arrival of hotter-than-ambient (Tp 1400°C) convecting mantle beneath the Potrillo area re-melted the TBL and caused the magmatism.

References

Achauer, U. & Masson, F. (2002). Seismic tomography of continental rifts revisited: from relative to absolute heterogeneities.
Tectonophysics
358, 17–37.
Anderson, D. L. (1994). The sublithospheric mantle as the source of continental flood basalts: the case against continental lithosphere and plume head reservoirs. Earth and Planetary Science Letters 123, 269–280.
Anderson, D. L. (2000). The thermal state of the upper mantle: no role for mantle plumes. Geophysical Research Letters 27, 3623–3626.
Anthony, E. Y. & Poths, J. (1992). 3He surface dating and its implications for magma evolution in the Potrillo volcanic field, Rio Grande Rift, New Mexico, USA. Geochimica et Cosmochimica Acta 56, 4105–4108.
Anthony, E. Y., Hoffer, J. M., Waggoner, W. K. & Chen, W. (1992).
Compositional diversity in late Cenozoic mafic lavas in the Rio Grande rift and Basin and Range province, southern New Mexico.
Geological Society of America Bulletin 104, 973–979.
Asimow, P. D. & Langmuir, C. H. (2003). The importance of water to oceanic melting regimes. Nature 421, 815–820.
Asimow, P. D., Dixon, J. E. & Langmuir, C. H. (2004). A hydrous melting and fractionation model for mid-ocean ridge
basalts: application to the Mid-Atlantic Ridge near the Azores.
Geochemistry, Geophysics, Geosystems 5, Q01E16, doi:10.1029/ 2003GC000568.
Ben Othman, D., Tilton, G. R. & Menzies, M. A. (1990). Pb, Nd and Sr isotopic investigations of kaersutite and clinopyroxene from ultramafic nodules and their host basalts: the nature of the subcontinental mantle. Geochimica et Cosmochimica Acta 54, 3449–3460.
Blundy, J. D., Robinson, J. A. C. & Wood, B. J. (1998). Heavy REE are compatible in clinopyroxene on the spinel lherzolite solidus.
Contributions to Mineralogy and Petrology 160, 493–504.
Bottazzi, P., Tiepolo, M., Vannucci, R., Zanetti, A., Brumm, R., Foley, S. F. & Oberti, R. (1999). Distinct site preferences for heavy and light REE in amphibole and the prediction of Amph/LDREE.
Contributions to Mineralogy and Petrology 137, 36–45.
Boyd, F. R., Pearson, D. G., Hoal, K. O., Hoal, B. G., Nixon, P. H., Kingston, M. J. & Mertzman, S. A. (2004). Garnet lherzolites from Louwrensia, Namibia: bulk composition and P/T relations. Lithos 77, 573–592.
Burton, K. W., Schiano, P., Birck, J. L. & Allegre, C. J. (1999).
Osmium isotope disequilibrium between mantle minerals in a spinel-lherzolite. Earth and Planetary Science Letters 172, 311–322.
Bussod, G. Y. A. & Williams, D. R. (1991). Thermal and kinematic model of the southern Rio Grande rift: inferences from crustal and mantle xenoliths from Kilbourne Hole, New Mexico. Tectonophysics 197, 373–389.
Carlson, R. W., Pearson, D. G. & James, D. E. (2005). Physical, chemical and chronological characteristics of continental mantle.
Reviews of Geophysics (in press).
Class, C. & Goldstein, S. L. (1997). Plume–lithosphere interactions in the ocean basins: constraints from the source mineralogy.
Contributions to Mineralogy and Petrology 150, 245–260.
Cordell, L., Zorin, Y. A. & Keller, G. R. (1991). The decompensative gravity anomaly and deep structure of the region of the Rio Grande rift. Journal of Geophysical Research 96, 6557–6568.
Dixon, J. E. & Clague, D. A. (2001). Volatiles in basaltic glasses from Loihi Seamount, Hawaii: evidence for a relatively dry plume component. Journal of Petrology 42, 627–654.
Dixon, J. E., Clague, D. A., Wallace, P. & Poreda, R. (1997). Volatiles in alkalic basalts from the North Arch volcanic field, Hawaii:
extensive degassing of deep submarine-erupted alkalic series lavas.
Journal of Petrology 38, 911–939.
Eaton, G. P. (1987). Topography and origin of the southern Rocky Mountains and Alvarado Ridge. In: Coward, M. P., Dewey, J. F. & Hancock, P. L. (eds) Extensional Tectonics. London: Geological Society, pp. 355–369.
Falloon, T. J., Green, D. H., O’Neill, H. St.C. & Hibberson, W. O.
(1997). Experimental tests of low degree peridotite partial melt
compositions: implications for the nature of anhydrous nearsolidus peridotite melts at 1 GPa. Earth and Planetary Science Letters 152, 149–162.
Falloon, T. J., Green, D. H., Danyushevsky, L. V. & Faul, U. H.
(1999). Peridotite melting at 10 and 15 GPa: an experimental evaluation of techniques using diamond aggregates and mineral mixes for determination of near-solidus melts. Journal of Petrology 40, 1343–1375.
Foley, S. (1992). Vein-plus-wall-rock melting mechanisms in the lithosphere and the origin of potassic alkaline rocks. Lithos 28, 435–453.
Foley, S. F., Musselwhite, D. S. & Van de Laan, S. R. (1999). Melt compositions from ultramafic vein assemblages in the lithospheric
mantle: a comparison of cratonic and non-cratonic settings.
Proceedings of the VIIth International Kimberlite Conference. 1. Cape
Town:
Red Roof Design, pp. 238–246.
Frey, F. A. & Green, D. H. (1974). The mineralogy, geochemistry and origin of lherzolite inclusions in Victorian basanites. Geochimica et Cosmochimica Acta 38, 1023–1059.
Gibson, S. A., Thompson, R. N., Leat, P. T., Dickin, A. P., Morrison, M. A., Hendry, G. L. & Mitchell, J. G. (1992).
Asthenosphere-derived magmatism in the Rio Grande rift: implications for continental break-up. In: Storey, B. C., Alabaster, T. & Pankhurst, R. J. (eds) Magmatism and the Causes of Continental Break-up Geological Society, London, Special Publications. 68, 61–89.
Gibson, S. A., Thompson, R. N., Leat, P. T., Morrison, M. A., Hendry, G. L., Dickin, A. P. & Mitchell, J. G. (1993). Ultrapotassic magmas along the flanks of the Oligo-Miocene Rio Grande rift, U.S.A.: monitors of the zone of lithospheric mantle extension and thinning beneath a continental rift. Journal of Petrology 34, 187–228.
Gibson, S. A., Thompson, R. N., Leonardos, O. H., Dickin, A. P. & Mitchell, J. G. (1995). The Late Cretaceous impact of the Trindade mantle plume: evidence from large-volume, mafic, potassic magmatism in SE Brazil. Journal of Petrology 36, 189–229.
Grand, S. P. (1987). Tomographic inversion for shear structure beneath the North American Plate. Journal of Geophysical Research 92, 14065–14090.
Green, D. H., Falloon, T. J., Eggins, S. M. & Yaxley, G. M. (2001).
Primary magmas and mantle temperatures. European Journal of Mineralogy 13, 437–451.
Greenwood, J. C. (2001). The secular geochemical variation of the Trindade mantle plume. Ph.D. thesis, University of Cambridge, UK,
292 pp.
Hart, S. R. & Dunn, T. (1993). Experimental cpx/melt partitioning of
24 trace elements. Contributions to Mineralogy and Petrology 113, 1–8.
Hauri, E. H. (2002). Osmium isotopes and mantle convection.
Philosophical Transactions of the Royal Society of London A360, 2371–2382.
Hirose, K. (1997). Partial melt compositions of carbonated peridotite at
3 GPa and the role of CO2 in alkali-basalt magma generation.
Geophysical Research Letters 24, 2837–2840.
Hirose, K. & Kushiro, I. (1993). Partial melting of dry peridotites at high pressures: determination of compositions of melts segregated from peridotite using aggregates of diamond. Earth and Planetary Science Letters 114, 477–489.
Hirose, K. & Kawamoto, T. (1995). Hydrous partial melting of lherzolite at 1 GPa: the effect of H2O on the genesis of basaltic magmas. Earth and Planetary Science Letters 133, 463–473.
Hirschmann, M. M. (2000). Mantle solidus: experimental constraints and the effects of peridotite composition. Geochemistry, Geophysics, Geosystems 1, 2000GC000070.
Hirschmann, M. M., Baker, M. B. & Stolper, E. M. (1998). The effect of alkalis on the silica content of mantle-derived melts. Geochimica et Cosmochimica Acta 62, 883–902.
Hirschmann, M. M., Kogiso, T., Baker, M. B. & Stolper, E. M. (2003).
Alkalic magmas generated by partial melting of garnet pyroxenite.
Geology 31, 481–484.
Hirth, G. & Kohlstedt, D. L. (1996). Water in the oceanic upper
mantle: implications for rheology, melt extraction and the evolution of the lithosphere. Earth and Planetary Science Letters 144, 93–108.
Hoffer, J. M. (1971). Mineralogy and petrology of the Santo Tomas– Black Mountains basalts, Potrillo volcanics, south-central New Mexico. Geological Society of America Bulletin 82, 602–612.
Huckenholz, H. G., Gilbert, M. C. & Kunzmann, T. (1992). Stability and phase relations of calcic amphiboles crystallised from magnesiohastingsite compositions in the 1 to 45 kbar pressure range. Neues Jahrbuch f€ur Mineralogie, Abhandlngen 164, 229–268.
Humphreys, E. D., Dueker, K. G., Schutt, D. L. & Smith, R. B.
(2000). Beneath Yellowstone: evaluating plume and nonplume models using teleseismic images of the upper mantle. Geology Today 10, 1–7.
Irving, A. J. (1980). Petrology and geochemistry of composite ultramafic xenoliths in alkali basalts and implications for magmatic processes within the mantle. American Journal of Science 280A, 389–426.
Irving, A. J. & Frey, F. A. (1984). Trace element abundances in megacrysts and their host basalts: constraints on partition coefficients and megacryst genesis. Geochimica et Cosmochimica Acta 48, 1201–1221.
Johnson, J. S., Gibson, S. A., Thompson, R. N. & Nowell, G. M.
(2005). Volcanism in the Vitim Volcanic Field, Siberia: geochemical evidence for a mantle plume beneath the Baikal rift zone. Journal of Petrology, in press.
Keller, G. R., Morgan, P. & Seager, W. R. (1990). Crystal structure, gravity anomalies and heat flow in the southern Rio Grande rift and their relationship to extensional tectonics. Tectonophysics 174, 21–37.
Kempton, P. D. & Dungan, M. A. (1989). Geology and petrology of basalts and included mafic, ultramafic and granulitic xenoliths of the Geronimo volcanic field, southeastern Arizona. New Mexico Bureau of Mines and Mineral Resources Memoir 46, 161–173.
Kempton, P. D., Dungan, M. A. & Blanchard, D. P. (1987). Petrology and geochemistry of xenolith-bearing alkalic basalts from the Geronimo Volcanic Field, southeast Arizona: evidence for polybaric fractionation and implications for mantle heterogeneity. Geological Society of America, Special Paper 215, 347–370.
Kil, Y. & Wendlandt, R. F. (2004). Pressure and temperature evolution of upper mantle under the Rio Grande Rift. Contributions to Mineralogy and Petrology 148, 2665–2680.
King, S. D. and Anderson, D. L. (1998). Edge-driven convection. Earth and Planetary Science Letters 160, 289–296.
Klemme, S. & O’Neill, H. StC. (2000). The near-solidus transition from garnet lherzolite to spinel lherzolite. Contributions to Mineralogy and Petrology 138, 237–248.
Kogiso, T., Hirschmann, M. M. & Frost, D. J. (2003). High-pressure partial melting of garnet pyroxenite: possible mafic lithologies in the source of ocean island basalts. Earth and Planetary Science Letters 216, 603–617.
Kogiso, T., Hirschmann, M. M. & Reiners, P. W. (2004). Length scales of mantle heterogeneities and their relationship to ocean island basalt geochemistry. Geochimica et Cosmochimica Acta 68, 345–360.
Kojitani, H. & Akaogi, M. (1995). Measurement of heat of fusion of model basalt in the system Diopsite–Forsterite–Anorthite. Geophysical Research Letters 22, 2329–2332.
Kushiro, I. (1962). Clinopyroxene solid solution. Part I: The
CaAl2Si2O6 component. Japanese Journal of Geology and Geography 33, 213–220.
Kushiro, I. (1996). Partial melting of a fertile mantle peridotite at high
pressures: an experimental study using aggregates of diamond. In:
Basu, A. & Hart, S. (eds) Earth Processes: Reading the Isotopic Code.
Geophysical Monograph, American Geophysical Union 95, 109–122.
Langmuir, C. H., Klein, E. M. & Plank, T. (1992). Petrological systematics of mid-ocean ridge basalts: constraints on melt generation beneath ocean ridges. In: Morgan, J. P., Blackman, D. K. & Sinton, J. M. (eds) Mantle Flow and Melt Generation at Mid-Ocean Ridges.
Geophysical Monograph, American Geophysical Union 71, 183–280.
Larsen, L. M. & Pedersen, A. K. (2000). Processes in high-Mg, high-T
magmas: evidence from olivine, chromite and glass in Palaeogene picrites from West Greenland. Journal of Petrology 41, 1071–1098.
Le Bas, M. J. (2000). IUGS reclassification of the high-Mg and picritic volcanic rocks. Journal of Petrology 41, 1467–1670.
Le Maitre, R. W. (2002). Igneous Rocks: A Classification and Glossary of
Terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Cambridge: Cambridge University Press.
le Roex, A. P., Sp€ath, A. & Zartman, R. E. (2001). Lithospheric thickness beneath the southern Kenya Rift: implications from basalt geochemistry. Contributions to Mineralogy and Petrology 142, 89–106.
Leake, B. E. & Hendry, G. L. (1969). The chemical analysis of rock powders by automatic X-ray fluorescence. Chemical Geology 5, 7–86.
Leat, P. T., Thompson, R. N., Morrison, M. A., Hendry, G. L. & Dickin, A. P. (1988). Compositionally diverse Miocene–Recent rift-related magmatism in northwest Colorado: partial melting and mixing of magmas from three different asthenospheric and lithospheric mantle sources. Journal of Petrology, Special Lithosphere Issue, 351–377.
Leat, P. T., Thompson, R. N., Morrison, M. A., Hendry, G. L. & Dickin, A. P. (1990). Geochemistry of mafic lavas in the early Rio Grande Rift, Yarmony Mountain, Colorado, U.S.A. Chemical Geology 81, 23–43.
Leat, P. T., Thompson, R. N., Morrison, M. A., Hendry, G. L. & Dickin, A. P. (1991). Alkaline hybrid mafic magmas of the Yampa area, NW Colorado, and their relationship to the Yellowstone mantle plume and lithospheric mantle domains. Contributions to Mineralogy and Petrology 107, 310–327.
Litasov, K. D., Foley, S. F. & Litasov, Y. D. (2000). Magmatic modification and metasomatism of the subcontinental mantle beneath the Vitim volcanic field (East Siberia): evidence from trace element data on pyroxenite and peridotite xenoliths from Miocene picrobasalt. Lithos 54, 83–114.
Mack, G. H. & Seager, R. W. (1995). Transfer zones in the southern Rio Grande rift. Journal of the Geological Society, London 152, 551–560.
McKenzie, D. (1989). Some remarks on the movement of small melt fractions in the mantle. Earth and Planetary Science Letters 95, 53–72.
McKenzie, D. & Bickle, M. J. (1988). The volume and composition of melt generated by extension of the lithosphere. Journal of Petrology 29, 625–679.
McKenzie, D. & O’Nions, R. K. (1991). Partial melt distributions from inversion of rare earth element concentrations. Journal of Petrology 32, 1021–1091.
McKenzie, D. & O’Nions, R. K. (1995). The source regions of ocean island basalts. Journal of Petrology 36, 133–159.
McKenzie, D., Stracke, A., Blichert-Toft, J., Albarede, F., Gro¨nvold, K.
& O’Nions, R. K. (2004). Source enrichment processes responsible for isotopic anomalies in oceanic island basalts. Geochimica et Cosmochimica Acta 68, 2699–2724.
Meisel, T., Walker, R. J., Irving, A. J. & Lorand, J.-P. (2001). Osmium isotopic compositions of mantle xenoliths: a global perspective.
Geochimica et Cosmochimica Acta 65, 1311–1323.
Menzies, M. A. & Hawkesworth, C. J. (eds) (1987). Mantle Metasomatism.
London: Academic Press.
Michael, P. J. (1988). The concentration, behaviour and storage of H2O in the suboceanic upper mantle: implications for mantle metasomatism. Geochimica et Cosmochimica Acta 52, 555–566.
Morgan, P., Seager, W. R. & Golombek, M. P. (1986). Cenozoic thermal, mechanical and tectonic evolution of the Rio Grande Rift.
Journal of Geophysical Research 91, 6263–6276.
Novak, O., Ritter, J. R. R., Altherr, R., Garasic, V., Volker, F., Kluge, C., Kaspar, T., Byrne, G. F., Sobolev, S. V. & Fuchs, K.
(1997). An integrated model for the deep structure of the Chyulu Hills volcanic field, Kenya. Tectonophysics 278, 187–209.
Olsen, K. H., Baldridge, W. S. & Callender, J. F. (1987). Rio Grande
rift: an overview. Tectonophysics 143, 119–139.
Ortiz, T. S. (1980). Occurrence and mineral chemistry of high pressure phases, Potrillo basalt, south-central New Mexico. M.S. thesis, University of Texas, El Paso.
Ottley, C. J., Pearson, D. G. & Irvine, G. J. (2003). A routine method for the dissolution of geological samples for the analysis of REE and trace elements via ICP-MS, in plasma source mass spectrometry:
In: Holland, J. G. & Tanner, S. D. (eds) Applications and Emerging Technologies. Cambridge: The Royal Society of Chemistry, pp. 221–230.
Padovani, E. R. & Reid, M. R. (1989). Field guide to Kilbourne Hole maar, Do~na Ana County, New Mexico. New Mexico Bureau of Mines and Mineral Resources Memoir 46, 174–179.
Pearson, D. G. & Nowell, G. M. (2002). The continental lithospheric
mantle: characteristics and significance as a mantle reservoir.
Philosophical Transactions of the Royal Society of London A360, 2383–2410.
Pearson, D. G. & Nowell, G. M. (2004). Re–Os and Lu–Hf isotope constraints on the origin and age of pyroxenites from the Beni Bousera peridotite massif: implications for mixed peridotite– pyroxenite melting models. 45, Journal of Petrology 439–455.
Pearson, D. G. & Woodland, S. J. (2000). Carius tube digestion and solvent extraction/ion exchange separation for the analysis of PGEs (Os, Ir, Pt, Pd, Ru) and Re–Os isotopes in geological samples by isotope dilution ICP-mass spectrometry. Chemical Geology 165, 87–107.
Pearson, D. G., Irvine, G. J., Carlson, R. W., Kopylova, M. G. & Ionov, D. A. (2002). The development of lithospheric mantle keels beneath the earliest continents: time constraints using PGE and Re–Os isotope systematics. In: Fowler, C. M. R., Ebinger, C. J. & Hawkesworth, C. J. (eds) The Early Earth: Physical, Chemical and Biological Development. Geological Society, London, Special Publications.
199,
pp. 65–90.
Pearson, D. G., Irvine, G. J., Ionov, D. A., Boyd, F. R. & Dreibus, G. E.
(2004). Re–Os isotope systematics and Platinum Group Element fractionation during mantle melt extraction: a study of massif and xenolith peridotite suites. Chemical Geology 208, 29–59.
Putirka, K., Johnson, M., Kinzler, R., Longhi, J. & Walker, D. (1996).
Thermobarometry of igneous rocks based on clinopyroxene– liquid equilibria, 0–30 kbar. Contributions to Mineralogy and Petrology 123, 92–108.
Robinson, J. A. C., Wood, B. J. & Blundy, J. D. (1998). The beginning of melting of fertile and depleted peridotite at 15 GPa. Earth and Planetary Science Letters 155, 97–111.
Roden, M. F., Irving, A. J. & Murthy, V. R. (1988). Isotopic and trace element composition of the upper mantle beneath a young continental rift: results from Kilbourne Hole, New Mexico. Geochimica et Cosmochimica Acta 52, 461–473.
Saal, A. E., Rudnick, R. L., Ravizza, G. E. & Hart, S. R. (1998).
Re–Os isotope evidence for the composition, formation and age of the lower continental crust. Nature 393, 58–61.
Sack, R. O., Walker, D. & Carmichael, I. S. E. (1987). Experimental petrology of alkalic lavas: constraints on cotectics of multiple saturation in natural basic liquids. Contributions to Mineralogy and Petrology 96, 1–23.
Scherer, E. E., Cameron, K. L., Johnson, C. M., Beard, B. L., Barovich, K. M. & Collerson, K. D. (1997). Lu–Hf geochronology applied to dating Cenozoic events affecting lower crustal xenoliths from Kilbourne Hole, New Mexico. Chemical Geology 142, 63–78.
Seager, W. R., Shafiqullah, M., Hawley, J. W. & Marvin, R. F. (1984).
New K–Ar dates from basalts and the evolution of the southern Rio Grande rift. Geological Society of America Bulletin 95, 87–99.
Sinno, Y. A., Daggett, P. H., Keller, G. R., Morgan, P. & Harder, S. H.
(1986). Crustal structure of the southern Rio Grande rift determined from seismic refraction profiling. Journal of Geophysical Research 91, 6143–6156.
Smith, P. M. (2001). A study of mantle melting during lithospheric stretching using subsidence analysis, geochemical and thermodynamic modelling. Ph.D. thesis, University of Cambridge, Cambridge,
256 pp.
Soesoo, A. (1997). A multivariate statistical analysis of clinopyroxene
composition: empirical coordinates for the crystallisation PT-estimations. GFF 119, 55–60.
Sp€ath, A., le Roex, A. P. & Opiyo-Akech, N. (2001).
Plume–lithosphere
interaction and the origin of continental rift-related alkaline
volcanism: the Chyulu Hills volcanic province, southern Kenya.
Journal of Petrology 42, 765–787.
Takahashi, E., Shimazaki, T., Tsuzaki, Y. & Yoshida, H. (1993).
Melting study of a peridotite KLB-1 to 65 GPa and the origin of basaltic magmas. Philosophical Transactions of the Royal Society of London A342, 105–120.
Thompson, R. N. (1972). Oscillatory and sector zoning in augite from a Vesuvian lava. Carnegie Institution of Washington, Yearbook 71, 463–470.
Thompson, R. N. (1974). Some high-pressure pyroxenes. Mineralogical Magazine 39, 768–787.
Thompson, R. N. (1982). Magmatism of the British Tertiary Volcanic Province. Scottish Journal of Geology 18, 49–107.
Thompson, R. N. (1984). Dispatches from the basalt front. I:
Experiments. Proceedings of the Geologists’ Association 95, 249–262.
Thompson, R. N. & Gibson, S. A. (1991). Subcontinental mantle plumes, hot spots and pre-existing thinspots. Journal of the Geological Society, London 148, 973–977.
Thompson, R. N. & Gibson, S. A. (1994). Magmatic expression of lithospheric thinning across continental rifts. Tectonophysics 233, 41–68.
Thompson, R. N. & Gibson, S. A. (2000). Transient high temperatures in mantle plume heads inferred from magnesian olivines in Phanerozoic picrites. Nature 407, 502–506.
Thompson, R. N., Esson, J. & Dunham, A. C. (1972). Major element chemical variation in the Eocene lavas of the Isle of Skye, Scotland.
Journal of Petrology 13, 219–253.
Thompson, R. N., Morrison, M. A., Hendry, G. L. & Parry, S. J.
(1984). An assessment of the relative roles of crust and mantle in magma genesis: an elemental approach. Philosophical Transactions of the Royal Society of London A310, 549–590.
Thompson, R. N., Leat, P. T. & Humphreys, E. (1989). What is the influence of the Yellowstone mantle plume on Pliocene–Recent western USA magmatism? New Mexico Bureau of Mines and Mineral Resources, Bulletin 131, 268.
Thompson, R. N., Gibson, S. A., Dickin, A. P. & Smith, P. M. (2001).
Early Cretaceous basalt and picrite dykes of the southern Etendeka region, NW Namibia: windows into the role of the Tristan mantle plume in Parana–Etendeka magmatism. Journal of Petrology 42, 2049–2081.
Ulmer, P. (1989). The dependence of the Fe2þ–Mg cation-partitioning between olivine and basaltic liquid on pressure, temperature and composition. Contributions to Mineralogy and Petrology 101, 261–273.
Walker, R. J., Morgan, J. W., Beary, E. S., Smoliar, M. I., Czamanske, G. D. & Horan, M. F. (1997). Applications of the 190Pt–186Os isotope system to geochemistry and cosmochemistry.
Geochimica et Cosmochimica Acta 61, 4799–4807.
Wallace, P. J. (1998). Water and partial melting in mantle plumes:
inferences from the dissolved H2O concentrations of Hawaiian basaltic magmas. Geophysical Research Letters 25, 3639–3642.
Walter, M. J. (1998). Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. Journal of Petrology 39, 29–60.
Wang, K., Plank, T., Walker, J. D. & Smith, I. E. (2002). A mantle melting profile across the Basin and Range, SW USA. Journal of Geophysical Research 107(B1), 2017, 10.1029/2001JB000209.
Watson, S. & McKenzie, D. (1991). Melt generation by plumes: a study of Hawaiian volcanism. Journal of Petrology 32, 501–537.
White, R. S., McKenzie, D. P. & O’Nions, R. K. (1992). Oceanic crustal thickness from seismic measurements and rare earth element inversions. Journal of Geophysical Research 97, 19683–19715.
Widom, E., Hoernle, K. A., Shirey, S. B. & Schmincke, H.-U. (1999). Os isotope systematics in the Canary Islands and Madeira: lithospheric contamination and mantle plume signatures. Journal of Petrology 40, 279–296.
Wilson, M. & Downes, H. M. (1991). Tertiary–Quaternary extensionrelated alkaline magmatism in Western and Central Europe. Journal of Petrology 32, 811–849.
Wilson, M., Rosenbaum, J. M. & Dunning, E. A. (1995). Melilitites:
partial melts of the thermal boundary layer? Contributions to Mineralogy and Petrology 119, 181–196.
Wood, B. J. & Blundy, J. D. (1997). A predictive model for rare earth element partitioning between clinopyroxene and anhydrous silicate melt. Contributions to Mineralogy and Petrology 129, 166–181.
Yang, H.-J., Frey, F. A. & Clague, D. A. (2003). Constraints on the source components of lavas forming the Hawaiian North Arch and Honolulu volcanics. Journal of Petrology 44, 603–627.
Yaxley, G. M. & Green, D. H. (1998). Reactions between eclogite and peridotite: mantle refertilisation by subduction of oceanic crust. Schweizerische Mineralogische und Petrographische Mitteilungen 78, 243–255.
Yoder, H. S. & Tilley, C. E. (1962). Origin of basalt magmas: an experimental study of natural and synthetic rock systems. Journal of Petrology 3, 342–532.