Cookies

We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Email and Telephone Directory

Staff Profile

Peter Bowcock, PhD University of Cambridge

Personal web page

Associate Professor, Theoretical Particle Physics in the Department of Mathematical Sciences
Telephone: +44 (0) 191 33 43064
Room number: CM307
Associate Professor in the Centre for Particle Theory

(email at peter.bowcock@durham.ac.uk)

Research Groups

Department of Mathematical Sciences

  • Mathematical & Theoretical Physics
  • Mathematical & Theoretical Physics: Quantum Field Theory

Research Interests

  • Integrable systems
  • Mathematical physics
  • String theory

Publications

Journal Article

  • Bristow, Rebecca & Bowcock, Peter (2017). Momentum conserving defects in affine Toda field theories. Journal of High Energy Physics 2017(5): 153.
  • Ciavarella, A. & Bowcock, P. (2010). Boundary Giant Magnons and Giant Gravitons. Journal of High Energy Physics 2010(09): 072.
  • Bowcock, Peter & Umpleby, James M. (2009). Defects and Dressed Boundaries in Complex Sine-Gordon Theory. Journal of High Energy Physics 2009(01): 008.
  • Bowcock, Peter, Foster, David & Sutcliffe, Paul (2009). Q-balls, Integrability and Duality. Journal of Physics A: Mathematical and Theoretical 42(8): 085403.
  • Bowcock, Peter & Umpleby, James (2008). Quantum complex sine-Gordon dressed boundaries. Journal of High Energy Physics 2008(11): 038.
  • Bowcock, P. & Tzamtzis, G. (2007). Quantum complex sine-Gordon model on a half line. Journal of High Energy Physics 2007(11): 018.
  • Bowcock, P., Corrigan, E. & Zambon, C. (2005). Some aspects of jump-defects in the quantum sine-Gordon model. Journal of High Energy Physics 2005(08): 023.
  • Bowcock, P., Corrigan, E. & Zambon, C. (2004). Affine Toda field theories with defects. Journal of High Energy Physics 2004(01): 056.
  • Bowcock, P., Corrigan, E. & Zambon, C. (2004). Classically integrable field theories with defects. International Journal of Modern Physics A 19(supp02): 82-91.
  • Bowcock, P. & Perkins, M. (2003). Aspects of classical backgrounds and scattering for affine Toda theory on a half-line. Journal of High Energy Physics 2003(02): 016.
  • Bowcock P., Feigin B.L., Semikhatov A.M. & Taormina A. (2000). Affine sl(2/1) and affine D(2/1;alpha) as vertex operator extensions of dual affine sl(2) algebras. Communications in Mathematical Physics 214: 495-545.
  • Bowcock, Peter, Charmousis, Christos and Gregory, Ruth (2000). General brane cosmologies and their global spacetime structure. Classical and Quantum Gravity 17: 4745-4763.
  • Bowcock, P., Hayes, M.R. & Taormina, A. (1999). Parafermionic representation of the affine sl(2|1:C) algebra at fractional level. Physics Letters B468(3-4): 239-243.
  • Bowcock, P. & Perkins, M. (1999). Quantum corrections to the classical reflection factor in a2(1) Toda field theory. Nuclear Physics B 538(3): 612-630.
  • Bowcock P., Hayes, M.R. & Taormina A. (1998). Characters of admissible representations of the affine superalgebra sl(2/1;C). Nuclear Physics B510(3): 739-763.
  • Bowcock, P. (1998). Classical backgrounds and scattering for affine Toda theory on a half-line. Journal of high energy physics 1998(5): 008.
  • Bowcock P & A. Taormina (1997). Representation theory of the affine Lie superalgebra SL(2|1:C) at fractional level. Communications in Mathematical Physics 185: 467-493.
  • Bowcock, P. & Taormina, A. (1997). Representation theory of the affine-superalgebra sl(2/1) and non-critical N=2 strings. Communications in Mathematical Physics 185(2): 467-493.
  • Bowcock, P., Corrigan, Edward & Rietdijk, R.H. (1996). Background field boundary conditions for affine Toda field theories. Nuclear Physics B 465(1-2): 350-364.
  • Bowcock, P, Koktava, R-L.K. & Taormina, A. (1996). Wakimoto modules for the affine superalgebra sl(2/1) and non-critical N = 2 Strings. Physics Letters B388(2): 303-308.
  • Bowcock, P., Corrigan, Edward, Dorey, P.E. & Rietdijk, R.H. (1995). Classically integrable boundary conditions for affine Toda field theories. Nuclear Physics B 445(2-3): 469-500.
  • Corrigan, E.F., Bowcock, P., Dorey, P.E. & Rietdijk, R.H. (1994). Classically integrable boundary conditions for affine Toda field theories, DTP-94/57.
  • Bowcock, Peter & Gregory, Ruth (1991). Multidimensional tunneling and complex momentum. Physical Review D 44: 1774-1785.

Conference Paper

  • Gregory, R. & Bowcock, P. (Forthcoming), Some problems with two field tunneling.
  • Barrett, Jessica K. & Bowcock, Peter (Forthcoming), The D3$|$D1-brane intersection and monopole scattering.
  • Bowcock, Peter & Gregory, Ruth (Forthcoming), Tunneling from nonlocalized initial states.
  • Barrett, Jessica K. & Bowcock, Peter (2005), Using D-strings to describe monopole scattering: Numerical calculations.
  • Barrett, Jessica K. & Bowcock, Peter (2004), Using D-strings to describe monopole scattering.
  • Bowcock, P. & Tzamtzis, G. (2002), The complex sine-Gordon model on a half line.
  • Bowcock, P., Feigin, B.L., Semikhatov, A.M. & Taormina, A. (2000), sl-hat(2|1) and D-hat(2|1,alpha) as vertex operator extensions of dual affine sl(2) algebras, 214: 495-545.
  • Bowcock, P., Hayes, M. & Taormina, A. (1999), Parafermionic representation of the affine sl(2|1,C) algebra at fractional level, B468: 239-243.
  • Perkins, Michael & Bowcock, Peter (1999), Quantum corrections to the classical reflection factor in a(2)(1) Toda field theory, B538: 612-630.
  • Bowcock, P., Hayes, M. & Taormina, A. (1998), Characters of admissible representations of the affine superalgebra sl(2|1), B510: 739-764.
  • Bowcock, P. (1998), Classical backgrounds and scattering for affine Toda theory on a half-line, 05: 008.
  • Bowcock, P. & Taormina, A. (1997), Representation theory of the affine Lie superalgebra sl(2/1,C) at fractional level, 185: 467-493.
  • Bowcock, P., Koktava, R.L.K. & Taormina, A. (1996), Wakimoto modules for the affine superalgebra sl(2/1) and noncritical N = 2 strings, B388: 303-308.
  • Bowcock, P. & Watts, G.M.T. (1994), Null vectors, three point and four point functions in conformal field theory, 98: 350-356.
  • Bowcock, P. (1994), Representation theory of a W algebra from generalized DS reduction.
  • Bowcock, P. (1992), Exceptional superconformal algebras, B381: 415-430.
  • Bowcock, P. & Watts, G.M.T. (1992), Null vectors of the W(3) algebra, B297: 282-288.
  • Bowcock, P. & Watts, G.M.T. (1992), On the classification of quantum W algebras, B379: 63-95.
  • Bowcock, Peter (1991), QUASI-PRIMARY FIELDS AND ASSOCIATIVITY OF CHIRAL ALGEBRAS, B356: 367-385.
  • Bowcock, P. (1989), CANONICAL QUANTIZATION OF THE GAUGED WESS-ZUMINO MODEL, B316: 80.
  • Bowcock, Peter & Goddard, Peter (1988), COSET CONSTRUCTIONS AND EXTENDED CONFORMAL ALGEBRAS, B305: 685.
  • Bowcock, P. & Goddard, P. (1987), VIRASORO ALGEBRAS WITH CENTRAL CHARGE c < 1, B285: 651.

Supervises