Cookies

We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Email and Telephone Directory

Staff Profile

James Blowey, PhD University of Sussex

Associate Professor (Reader), Analysis & Partial Differential Equations in the Department of Mathematical Sciences
Associate Professor (Reader) & Deputy Head of Faculty (Natural Sciences) in the Faculty of Science

(email at natural.sciences-director@durham.ac.uk)

Biography

My research interests are in the Numerical Analysis of Partial Differential Equations. In particular

  1. Degenerate Fourth order problems.
  2. On Phase transformation of alloys;

Please visit my Maths Department webpage for more information including contact details.

Research Groups

Department of Mathematical Sciences

  • Applied & Computational Mathematics: Analysis & Partial Differential Equations

Research Interests

  • Numerical analysis

Selected Publications

Edited book

  • Blowey, J.F. & Craig, A.W. (2005). Frontiers in Numerical Analysis: Durham 2004. Universitext. Berlin, Heidelberg: Springer.
  • Blowey, J.F., Craig, A.W. & Shardlow, T. (2003). Frontiers in Numerical Analysis: Durham 2002. Universitext. Berlin: Springer.
  • Blowey, J.F., Coleman, J.P. & Craig, A.W. (2001). Theory and numerics of differential equations. Universitext. New York: Springer.

Chapter in book

  • Blowey, J.F. & Elliott, C.M. (1993). Curvature dependent phase boundary motion and parabolic double obstacle problems. In Degenerate Diffusions The IMA Volumes in Mathematics and its Applications Volume 47. Ni, W.-M., Peletier, L.A. & Vazquez, J.L. New York: Springer. 19-60.

Journal Article

  • Blowey, J. F., King, J. R. & Langdon, S. (2007). Small- and waiting-time behaviour of the thin-film equation. SIAM Journal on Applied Mathematics 67(6): 1776-1807.
  • Blowey, J.F. & Garvie, M.R. (2005). A reaction-diffusion system of λ–ω type Part I: Mathematical analysis. European journal of applied mathematics 16(1): 1-19.
  • J.W. Barrett & J.F. Blowey (2002). Finite element approximation of an Allen-Cahn/Cahn-Hilliard system. IMA Journal of Numerical Analysis 22(1): 11-71.
  • Barrett, J.W. & Blowey, J.F. (2001). An Improved Error Bound for a Finite Element Approximation of a Model for Phase Separation of a Multi-Component Alloy with a Concentration Dependent Mobility Matrix. Numerische Mathematik 88(2): 255-297.
  • John W. Barrett & James F. Blowey (2001). Finite Element Approximation of a Degenerate Allen--Cahn/Cahn--Hilliard System. SIAM journal on numerical analysis 39(5): 1598-1624.
  • J.W. Barrett, J.F. Blowey & H. Garcke (2001). Finite element approximation of a model for phase separation of a multi-component alloy with degenerate mobility matrix. Modelisation Mathematique et Analyse Numerique 35: 713-748.
  • J.W. Barrett, J.F. Blowey & H. Garcke (2001). On Fully Practical Finite Element Approximations of Degenerate Cahn-Hilliard Systems. ESAIM: Mathematical Modelling and Numerical Analysis = Modelisation Mathematique et Analyse Numerique 35(4): 713-748.
  • Blowey, J.F. & Barrett, J.W. (1999). An improved error bound for a finite element approximation of a model for phase separation of a multi-component alloy with non-smooth free energy. Modélisation Mathématique et Analyse Numérique 33(5): 971-987.
  • Blowey, J.F. & Barrett, J.W. (1999). An improved error bound for a finite element approximation of a model for phase separation of a multi-component alloy. IMA journal of numerical analysis 19(1): 147-168.
  • Blowey, J.F. & Barrett, J.W. (1999). Finite element approximation of a model for phase separation of a multi-component alloy with nonsmooth free energy and a concentration dependent mobility matrix. Mathematical models and methods in applied sciences 9(5): 627-663.
  • Blowey, J.F. & Barrett, J.W. (1999). Finite element approximation of the Cahn-Hilliard equation with concentration dependent mobility. Mathematics of computation 68(226): 487-517.
  • Blowey, J.F., Barrett, J.W. & Garcke, H. (1999). Finite element approximation of the Cahn-Hilliard equation with degenerate mobility. SIAM journal on numerical analysis 37(1): 286-318.
  • Blowey, J.F., Barrett, J.W. & Garcke, H. (1998). Finite element approximation of a fourth order nonlinear degenerate parabolic equation. Numerische mathematick 80(4): 525-556.
  • Blowey, J.F. & Barrett, J.W. (1998). Finite element approximation of a model for phase separation of a multi-component alloy with a concentration dependent mobility matrix. IMA journal of numerical analysis 18(2): 287-328.
  • Blowey JF & Barrett J.W. (1997). Finite element approximation of a model for phase separation of a multi-component alloy with non-smooth free energy. Numerische Mathematik 77: 1-34.
  • Blowey, J.F. & Barrett, J.W. (1996). An Error Bound for the Finite Element Approximation of a Model for Phase Separation of a Multi-Component Alloy. IMA journal of numerical analysis 16(2): 257-287.
  • Blowey, J.F., Copetti, M.I.M. & Elliott, C.M. (1996). Numerical analysis of a model for phase separation of a multicomponent alloy. IMA journal of numerical analysis 16(1): 111-139.
  • Blowey, J.F. & Barrett, J.W. (1995). An error bound for the finite element approximation of the Cahn-Hilliard equation with logarithmic free energy. Numerische mathematick 72(17): 1-20.
  • Blowey, J.F. & Elliott, C.M. (1992). The Cahn-Hilliard gradient theory for phase separation with non-smooth free energy Part II numerical analysis. European journal of applied mathematics 3(2): 147-179.

Conference Paper

  • Blowey, J.F. & Barrett, J.W. (2001), Finite element approximation of a model for order-disorder and phase separationin binary alloys, in Feistauer, Miloslav, Rannacher, R. & Kozel, Karel eds, 4th Summer Conference on Numerical Modelling in Continuum Mechanics. Prague, Matfyzpress, Prague, 1-17.
  • Blowey, J.F. & Elliott, C.M. (1994), A phase field model with double obstacle potential, in Buttazzo G. & Visintin, A. eds, De Gruyter Proceedings in Mathematics International Conference: Motion by mean curvature and related topics. Trento, De Gruyter, New York, 1-22.

Show all publications

Media Contacts

Available for media contact about:

  • Numerical analysis: Science and Engineering Ambassador