Cookies

We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Email and Telephone Directory

Staff Profile

Anna Felikson, PhD Moscow State University

Personal web page

Associate Professor, Algebra in the Department of Mathematical Sciences

(email at anna.felikson@durham.ac.uk)

Research Groups

Department of Mathematical Sciences

  • Pure Mathematics
  • Pure Mathematics: Geometry

Research Interests

  • Cluster algebras
  • Coxeter groups
  • Hyperbolic geometry
  • Low-dimensional topology

Publications

Journal Article

  • Anna Felikson & Philipp Lampe (Submitted). Exchange graphs for mutation-finite non-integer quivers of rank 3. arXiv:1904.03928
  • Felikson, A. & Tumarkin, P. (Submitted). Mutation-finite quivers with real weights. arXiv:1902.01997
  • Felikson, A., Lawson, J.W., Shapiro, M. & Tumarkin, P. (2021). Cluster algebras from surfaces and extended affine Weyl groups. Transformation Groups
  • Felikson, A. & Tumarkin, P. (2019). Geometry of mutation classes of rank 3 quivers. Arnold Mathematical Journal 5(1): 37–55.
  • Canakci, I. & Felikson, A. (2019). Infinite rank surface cluster algebras. Advances in Mathematics 352: 862-942.
  • Felikson, A. & Tumarkin, P. (2018). Acyclic cluster algebras, reflection groups, and curves on a punctured disc. Advances in Mathematics 340: 855-882.
  • Felikson, A. & Tumarkin, P. (2017). Bases for cluster algebras from orbifolds. Advances in Mathematics 318: 191-232.
  • Felikson, A. & Natanzon, S. (2017). Double Pants Decompositions Revisited. Moscow Mathematical Journal 17(1): 51-58.
  • Felikson, A. & Tumarkin, P. (2016). Coxeter groups and their quotients arising from cluster algebras. International Mathematics Research Notices 2016(17): 5135-5186.
  • Felikson, A. & Tumarkin, P. (2016). Coxeter groups, quiver mutations and geometric manifolds. Journal of the London Mathematical Society 94(1): 38-60.
  • Felikson, A. & Tumarkin, P. (2014). Essential hyperbolic Coxeter polytopes. Israel Journal of Mathematics 199(1): 113-161.
  • Felikson, A., Shapiro, M., Thomas, H. & Tumarkin, P. (2014). Growth rate of cluster algebras. Proceedings of the London Mathematical Society 109(3): 653-675.
  • Felikson, A., Fintzen, J. & Tumarkin, P. (2014). Reflection subgroups of odd-angled Coxeter groups. Journal of Combinatorial Theory, Series A 126: 92-127.
  • Felikson, A., Shapiro, M. & Tumarkin, P. (2012). Cluster algebras and triangulated orbifolds. Advances in Mathematics 231(5): 2953-3002.
  • Felikson, A., Shapiro, M. & Tumarkin, P. (2012). Cluster algebras of finite mutation type via unfoldings. International Mathematics Research Notices 2012(8): 1768-1804.
  • Felikson, A. & Tumarkin, P. (2012). Hyperbolic subalgebras of hyperbolic Kac-Moody algebras. Transformation Groups 17(1): 87-122.
  • Felikson, Anna & Natanzon, Sergey (2012). Moduli via double pants decompositions. Differential Geometry and its Applications 30(5): 490-508.
  • Felikson, A., Shapiro, M. & Tumarkin, P. (2012). Skew-symmetric cluster algebras of finite mutation type. Journal of the European Mathematical Society 14(4): 1135-1180.
  • Dutour Sikirić, M., Felikson, A. & Tumarkin, P. (2011). Automorphism groups of root systems matroids. European Journal of Combinatorics 32(3): 383-389.
  • Felikson, Anna & Natanzon, Sergey (2011). Double pants decompositions of 2-surfaces. Moscow Mathematical Journal 11(2): 231-258.
  • Felikson, Anna & Natanzon, Sergey (2011). Labeled double pants decompositions. Moscow Mathematical Journal 11(3): 505-519.
  • Felikson, A. & Tumarkin, P. (2010). Reflection subgroups of Coxeter groups. Transactions of the American Mathematical Society 362(2): 847-858.
  • Felikson, A. & Tumarkin, P. (2009). Coxeter polytopes with a unique pair of non-intersecting facets. Journal of Combinatorial Theory, Series A 116(4): 875-902.
  • Felikson, A. & Tumarkin, P. (2008). On hyperbolic Coxeter polytopes with mutually intersecting facets. Journal of Combinatorial Theory, Series A 115(1): 121-146.
  • Felikson, A., Retakh, A. & Tumarkin, P. (2008). Regular subalgebras of affine Kac–Moody algebras. Journal of Physics A 41(36): 365204.

Supervises