Cookies

We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Email and Telephone Directory

Staff Profile

Pavel Tumarkin, PhD Moscow State University

Personal web page

Associate Professor, Algebra in the Department of Mathematical Sciences

(email at pavel.tumarkin@durham.ac.uk)

Research Groups

Department of Mathematical Sciences

  • Pure Mathematics
  • Pure Mathematics: Geometry

Research Interests

  • Cluster algebras
  • Coxeter groups
  • Hyperbolic geometry

Publications

Journal Article

  • Felikson, A. & Tumarkin, P. (Submitted). Mutation-finite quivers with real weights. arXiv:1902.01997
  • Felikson, A., Lawson, J.W., Shapiro, M. & Tumarkin, P. (2021). Cluster algebras from surfaces and extended affine Weyl groups. Transformation Groups
  • Canakci, I. & Tumarkin, P. (2019). Bases for cluster algebras from orbifolds with one marked point. Algebraic Combinatorics 2(3): 355-365.
  • Felikson, A. & Tumarkin, P. (2019). Geometry of mutation classes of rank 3 quivers. Arnold Mathematical Journal 5(1): 37–55.
  • Felikson, A. & Tumarkin, P. (2018). Acyclic cluster algebras, reflection groups, and curves on a punctured disc. Advances in Mathematics 340: 855-882.
  • Demonet, L., Plamondon, P.-G., Rupel, D., Stella, S. & Tumarkin, P. (2018). SL(2)-tilings do not exist in higher dimensions (mostly). Séminaire Lotharingien de Combinatoire 76: B76d.
  • Felikson, A. & Tumarkin, P. (2017). Bases for cluster algebras from orbifolds. Advances in Mathematics 318: 191-232.
  • Felikson, A. & Tumarkin, P. (2016). Coxeter groups and their quotients arising from cluster algebras. International Mathematics Research Notices 2016(17): 5135-5186.
  • Felikson, A. & Tumarkin, P. (2016). Coxeter groups, quiver mutations and geometric manifolds. Journal of the London Mathematical Society 94(1): 38-60.
  • Stella, S. & Tumarkin, P. (2016). Exchange relations for finite type cluster algebras with acyclic initial seed and principal coefficients. Symmetry, Integrability and Geometry: Methods and Applications (SIGMA) 12: 067.
  • Felikson, A. & Tumarkin, P. (2014). Essential hyperbolic Coxeter polytopes. Israel Journal of Mathematics 199(1): 113-161.
  • Felikson, A., Shapiro, M., Thomas, H. & Tumarkin, P. (2014). Growth rate of cluster algebras. Proceedings of the London Mathematical Society 109(3): 653-675.
  • Felikson, A., Fintzen, J. & Tumarkin, P. (2014). Reflection subgroups of odd-angled Coxeter groups. Journal of Combinatorial Theory, Series A 126: 92-127.
  • Felikson, A., Shapiro, M. & Tumarkin, P. (2012). Cluster algebras and triangulated orbifolds. Advances in Mathematics 231(5): 2953-3002.
  • Felikson, A., Shapiro, M. & Tumarkin, P. (2012). Cluster algebras of finite mutation type via unfoldings. International Mathematics Research Notices 2012(8): 1768-1804.
  • Felikson, A. & Tumarkin, P. (2012). Hyperbolic subalgebras of hyperbolic Kac-Moody algebras. Transformation Groups 17(1): 87-122.
  • Felikson, A., Shapiro, M. & Tumarkin, P. (2012). Skew-symmetric cluster algebras of finite mutation type. Journal of the European Mathematical Society 14(4): 1135-1180.
  • Dutour Sikirić, M., Felikson, A. & Tumarkin, P. (2011). Automorphism groups of root systems matroids. European Journal of Combinatorics 32(3): 383-389.
  • Felikson, A. & Tumarkin, P. (2010). Reflection subgroups of Coxeter groups. Transactions of the American Mathematical Society 362(2): 847-858.
  • Felikson, A. & Tumarkin, P. (2009). Coxeter polytopes with a unique pair of non-intersecting facets. Journal of Combinatorial Theory, Series A 116(4): 875-902.
  • Felikson, A. & Tumarkin, P. (2008). On hyperbolic Coxeter polytopes with mutually intersecting facets. Journal of Combinatorial Theory, Series A 115(1): 121-146.
  • Felikson, A., Retakh, A. & Tumarkin, P. (2008). Regular subalgebras of affine Kac–Moody algebras. Journal of Physics A 41(36): 365204.

Supervises