We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.


Research lectures, seminars and events

The events listed in this area are research seminars, workshops and lectures hosted by Durham University departments and research institutes. If you are not a member of the University, but  wish to enquire about attending one of the events please contact the organiser or host department.


December 2018
November 2018 January 2019
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31

Events for 7 December 2018

Masculinities in Martial Sports: West, East and Global South - Roundtable Discussion

10:00am to 12:00pm, Birley Room, Hatfield College

Contact; for more information about this event.

Chiara Toldo: NUTs and Bolts: free energy via susy localization

1:00pm, CM101

The partition function of three-dimensional N=2 SCFTs on circle bundles of closed Riemann surfaces was recently computed via supersymmetric localization. In this talk I will describe supergravity solutions having as conformal boundary such circle bundle. These configurations are solutions to N=2 minimal gauged supergravity in 4d and pertain to the class of AdS-Taub-NUT and AdS-Taub-Bolt preserving 1/4 of the supersymmetries. I will discuss the conditions for the uplift of these solutions to M-theory and I provide the expression for the on-shell action of the Bolt solutions, computed via holographic renormalization. I will show that, when the uplift condition is satisfied, the Bolt free energy matches with the large N limit of the partition function of the corresponding dual field theory. I will finally comment on possible subtleties that arise in our framework when a given boundary geometry admits multiple bulk fillings.

Contact, for more information about this event.

Nick Parker: Quantum fluids flex their muscles

3:00pm, CM301

Vortices are the muscles of fluid motion. In quantum fluids, such as superfluid Helium and ultracold gases, these muscles are particularly simple, having fixed core size and circulation. This, along with the absence of viscosity, makes these fluids a highly idealised system to study vortex dynamics and turbulence. Moreover, recent experimental advances now enable precise, real-time monitoring of individual quantum vortices.

Here I will discuss our work in understanding the dynamics of quantum vortices. This will range from their microscopic behaviour, such as vortex nucleation and reconnection events between two vortices, to their macroscopic domain of collective structures and quantum turbulence. Throughout, I will relate our findings to the latest experiments and analogs in classical fluids. If time permits, I will also discuss an even more exotic fluid - the quantum ferrofluid.

Contact for more information about this event.