We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Research & business

View Profile

Professor Emeritus Wojtek Zakrzewski, PhD

Professor, Theoretical Particle Physics in the Department of Mathematical Sciences
Telephone: +44 (0) 191 33 41525
Room number: CM118
Professor Emeritus in the Centre for Particle Theory

Contact Professor Emeritus Wojtek Zakrzewski (email at

Research Groups

Department of Mathematical Sciences

Research Interests

  • Mathematical physics

Indicators of Esteem

  • 'Committee Duties': 'Member of EPSRC College; refereed many EPSRC grant proposals'
  • 'Committee Duties': 'Member of 5 EU Scientific Evaluation Panels.'
  • 'Conference organization': 'Co-organizer, LMS Symposium on Topological Solitons, Aug 2004.'
  • 'Editorial Duties': 'On Editorial Board of Nonlinearity and Journal of Geometry and Symmetry in Physics'
  • 'Grants': 'Obtained grants (Royal Society, PPARC) for collaboration with scientists in Ukraine (RS) and in the UK (PPARC).'
  • 'Grants': 'Together with Prof RS Ward have held an ESPRC grant (Research Associate) and with other people in our Department\nhold a PPARC rolling grant.'
  • 'Invitation to research centres': 'Visited various research centres: longer visits: University of Bayreuth\n- Oct-Dec 2004; Dresden Centre for Complex Systems \n- April-June 2004;'
  • 'National and International Collaboration': 'I am in active collaboration with people in Germany, Ukraine, Russia, Poland, Venezuela and, of course, UK. '
  • 'Plenary and invited talks': 'Invited speaker at several international conferences: Bansko, Bulgaria (2001), Sao Paolo, Brazil (2002), Kiev, \nUkraine (2 different conferences - 2002 and 2003), Montreal,\nCanada (2003), Dresden, Germany (2004) and Quarks 2004,\nRussia (2004).'

Selected Publications

Authored book

  • (Published). JHEP.

Chapter in book

  • Sutcliffe, P. & Zakrzewski, W.J. (2001). Skyrmions from Harmonic Maps. In Integrable hierarchies and modern physical theories. Aratyn, Henrik & Sorin, Alexander S. Dordrecht: Kluwer Academic Publishers. 215-241.
  • Piette, B.M.A.G. & Zakrzewski, W.J. (1996). Some Aspects of Soliton Unwindings. In From Field Theory to Quantum Groups: birthday volume dedicated to Jerzy Lukierski. Jancewicz, Bernard & Sobczyk, Jan Singapore: World Scientific. 275-285.
  • Zakrzewski, W.J., Lukierski, J. & Ruegg, H. (1995). Classical and Quantum Mechanics of Free κ-Relativistic Systems. In Quantum groups formalism and applications XXX Karpacz Winter School of Theoretical Physics, Karpacz, Poland, 14-26 February 1994. Lukierski, J., Popowicz, Z. & Sobczyk, J. Warsaw: Polish Scientific Publishers. 539-554.

Conference Paper

  • Brizhik, L., Eremko, A. Piette, B. & Zakrzewski, W.J. (2010), Ratchet effect of Davydov's solitons in nonlinear low-dimensional nanosystems, International Journal of Quantum Chemistry 110: Molecular Self-Organization in Micro-, Nano-, and Macro-Dimensions: From Molecules to Water, to Nanoparticles, DNA and Proteins”. Kiev, Wiley, Kiev, 25-37.
  • Brizhik, L., Eremko, A., Piette, B. & Zakrzewski, W.J. (2009), Davydov's solitons in zigzag carbon nanotubes, International Journal of Quantum Chemistry 110: Molecular Self-Organization in Micro-, Nano-, and Macro-Dimensions: From Molecules to Water, to Nanoparticles, DNA and Proteins. Wiley, 11-24.
  • Brizhik, L., Eremko, A., Ferreira, L.A., Piette, B. & Zakrzewski, W.J. (2009), Some Properties of Solitons, in Russo, Nino, Antonchenko, V. IA. & Kryachko, Eugene S. eds, NATO Science for Peace and Security Series A: Chemistry and Biology SelfOrganization of Molecular Systems: NATO Advanced Research Workshop on Molecular Self-Organization. Kiev, Springer, Dordrecht, 103-121.
  • Ferreira, L.A., Piette, B. & Zakrzewski, W.J. (2008), Dynamics of the topological structures in inhomogeneous media, Journal of Physics: Conference Series 128: The 5th International Symposium on Quantum Theory and Symmetries. Valladolid, Spain, IOP Publishing, 012027.
  • Zakrzewski, W.J. & Cova, R.J. (1995), Skyrmions in (2+1) Dimensions, in Barut, A. O., Feranchuk, I. D., Shnir, Ya. M. & Tomil'chik, L. M. eds, International Workshop on Quantum Systems: New Trends and Methods. Minsk, World Scientific, Singapore, 84-88.
  • Piette, B.M.A.G. & Zakrzewski, W.J. (1994), General Structures in (2+1) Dimensional Models, in Spatschek, K.H. & Mertens, F.G. eds, Nonlinear Coherent Structures in Physics and Biology Plenum Press, 283-286.

Conference Proceeding

  • Brizhik, L. Eremko, A. Piette, B. & Zakrzewski, W. (2008). Effects of Periodic electromagnetic Field on Charge Transport in Macromolecules. Frohlich Symposium, Biophysical Aspects of Cancer: Electromagnetic Mechanisms.
  • Piette, B. & Zakrzewski, W.J. (2008). Scattering of sine-Gordon Kinks and Breathers on a Finite Width Well. Dynamic Systems and Applications, Atlanta, Georgia, USA.
  • Piette, B. & Zakrzewski, W.J. (2008). Some Aspects of Dynamics of Topological Solitons. 22nd Max Born Symposium,, Wroclaw.
  • Kopeliovich, V.B., Piette, B. & Zakrzewski, W.J. (2006). Mass Terms in the Skyrme Model. Quark 2006, St' Petersbourg, Russia.
  • Piette, B.M.A.G. & Zakrzewski, W.J. (2000). Nontopological structures in the baby-Skyrme model. Solitons, Properties, Dynamics, Interactions and Applications,, Springer.
  • Piette, B.M.A.G. & Zakrzewski, W.J. (1999). Skyrmions and Domain Walls. Properties, Dynamics, Interactions and Applications,, Springer.
  • Ioannidou, T., Piette, B.M.A.G. & Zakrzewski, W.J. (1999). SU(N) Skyrmions and two dimensional CPN Rational Maps. New symmetries and integrable models, Karpacz.
  • Ioannidou, T., Piette, B.M.A.G. & Zakrzewski, W.J. (1999). Three Dimensional Skyrmions and Harmonic Maps. Halifax.
  • Piette, B.M.A.G. & Zakrzewski, W.J (1997). Soliton-like structures in two dimensions and their properties.
  • Piette, B.M.A.G. & Zakrzewski, W.J. (1995). Scattering of extended structures in (2+1) dimensional models,. World Scientific.

Journal Article

Newspaper/Magazine Article

  • Delisle, L., Hussin, V. & Zakrzewski, W.J. (2013). Constant curvature solutions of Grassmannian sigma models: (1) Holomorphic solutions. Journal of Geometry and Physics 66: 24-36.
  • Stichel, P.C. & Zakrzewski, W.J. (2013). Nonstandard approach to gravity for the dark sector of the Universe. Entropy 15(2): 559-605.
  • Ferreira, L.A., Luchini, G. & Zakrzewski, W.J. (2013). The concept of quasi-integrability. AIP Conference Proceedings 1562: 43.
  • Adam, C., Sanchez-Guillen, J., Wereszczynski, A. & Zakrzewski, W.J. (2013). Topological duality between vortices and planar skyrmions in BPS theories with APD symmetries. P D 87: 027703.
  • Ferreira, L.A. & Zakrzewski, W.J. (2012). Attempts to define quasi-integrability. IJGMMP 6: 1261004.
  • Stichel, P.C. & Zakrzewski, W.J. (2012). Darkon fluid - a model for the dark sector of the Universe? IJGMMP 9: 1261014.
  • Ferreira, L.A., Luchini, G & Zakrzewski, W.J. (2012). The concept of quasi-integrability for modified non-linear Schr\"odinger models. JHEP 09: 103.
  • Ferreira, L.A., Klimas, P. & Zakrzewski, W.J. (2011). Properties of some (3+1) dimensional vortex solutions of the $CP^N$ model. Phys. Rev D 84: 085022.
  • Ferreira, L.J. & Zakrzewski, W.J. (2011). Some comments on quasi-integrability. Reports Math. Physics 67: 197.
  • Ferreira, L.A., Klimas, P. & Zakrzewski, W.J. (2011). Some properties of (3+1) dimensional vortex solutions in the extended $CP^N$ Skyrme Faddeev model. JHEP 1112: 098.
  • Al-Alawi, J.H. & Zakrzewski, W.J. (2009). Q-ball scattering on barriers and holes in 1 and 2 Spatial dimensions. Journal of Physics A 42: 245201.
  • Brizhik, L.S. Eremko, A.A. Piette, B.M.A.G. & Zakrzewski, W.J. (2008). Ratchet behaviour of polarons in molecular chains. Journal of Physics: Condensed Matter 20(25): 255242.

Show all publications

Media Contacts

Available for media contact about:

  • Europe: Language, literature & culture: Poland & other East European countries including former Soviet Union
  • Europe: Language, literature & culture: their Science & Universities
  • Atomic particles: Basic matter: particle physics
  • Numerical analysis: nonlinear phenomena
  • Particle theory: Elementary particle theory,
  • Elementary Particle Theory: Elementary particle theory,