Durham University

Research & business

View Profile

Professor Emeritus Wojtek Zakrzewski, PhD

Professor, Theoretical Particle Physics in the Department of Mathematical Sciences
Telephone: +44 (0) 191 33 41525
Room number: CM118
Professor Emeritus in the Centre for Particle Theory

Contact Professor Emeritus Wojtek Zakrzewski (email at w.j.zakrzewski@durham.ac.uk)

Research Groups

Department of Mathematical Sciences

Research Interests

  • Mathematical physics

Indicators of Esteem

  • 'Committee Duties': 'Member of EPSRC College; refereed many EPSRC grant proposals'
  • 'Committee Duties': 'Member of 5 EU Scientific Evaluation Panels.'
  • 'Conference organization': 'Co-organizer, LMS Symposium on Topological Solitons, Aug 2004.'
  • 'Editorial Duties': 'On Editorial Board of Nonlinearity and Journal of Geometry and Symmetry in Physics'
  • 'Grants': 'Obtained grants (Royal Society, PPARC) for collaboration with scientists in Ukraine (RS) and in the UK (PPARC).'
  • 'Grants': 'Together with Prof RS Ward have held an ESPRC grant (Research Associate) and with other people in our Department\nhold a PPARC rolling grant.'
  • 'Invitation to research centres': 'Visited various research centres: longer visits: University of Bayreuth\n- Oct-Dec 2004; Dresden Centre for Complex Systems \n- April-June 2004;'
  • 'National and International Collaboration': 'I am in active collaboration with people in Germany, Ukraine, Russia, Poland, Venezuela and, of course, UK. '
  • 'Plenary and invited talks': 'Invited speaker at several international conferences: Bansko, Bulgaria (2001), Sao Paolo, Brazil (2002), Kiev, \nUkraine (2 different conferences - 2002 and 2003), Montreal,\nCanada (2003), Dresden, Germany (2004) and Quarks 2004,\nRussia (2004).'

Selected Publications

Authored book

  • (Published). JHEP.

Chapter in book

  • Sutcliffe, P. & Zakrzewski, W.J. (2001). Skyrmions from Harmonic Maps. In Integrable hierarchies and modern physical theories. Aratyn, Henrik & Sorin, Alexander S. Dordrecht: Kluwer Academic Publishers. 215-241.
  • Piette, B.M.A.G. & Zakrzewski, W.J. (1996). Some Aspects of Soliton Unwindings. In From Field Theory to Quantum Groups: birthday volume dedicated to Jerzy Lukierski. Jancewicz, Bernard & Sobczyk, Jan Singapore: World Scientific. 275-285.
  • Zakrzewski, W.J., Lukierski, J. & Ruegg, H. (1995). Classical and Quantum Mechanics of Free κ-Relativistic Systems. In Quantum groups formalism and applications XXX Karpacz Winter School of Theoretical Physics, Karpacz, Poland, 14-26 February 1994. Lukierski, J., Popowicz, Z. & Sobczyk, J. Warsaw: Polish Scientific Publishers. 539-554.

Conference Paper

  • Brizhik, L., Eremko, A. Piette, B. & Zakrzewski, W.J. (2010), Ratchet effect of Davydov's solitons in nonlinear low-dimensional nanosystems, International Journal of Quantum Chemistry 110: Molecular Self-Organization in Micro-, Nano-, and Macro-Dimensions: From Molecules to Water, to Nanoparticles, DNA and Proteins”. Kiev, Wiley, Kiev, 25-37.
  • Brizhik, L., Eremko, A., Piette, B. & Zakrzewski, W.J. (2009), Davydov's solitons in zigzag carbon nanotubes, International Journal of Quantum Chemistry 110: Molecular Self-Organization in Micro-, Nano-, and Macro-Dimensions: From Molecules to Water, to Nanoparticles, DNA and Proteins. Wiley, 11-24.
  • Brizhik, L., Eremko, A., Ferreira, L.A., Piette, B. & Zakrzewski, W.J. (2009), Some Properties of Solitons, in Russo, Nino, Antonchenko, V. IA. & Kryachko, Eugene S. eds, NATO Science for Peace and Security Series A: Chemistry and Biology SelfOrganization of Molecular Systems: NATO Advanced Research Workshop on Molecular Self-Organization. Kiev, Springer, Dordrecht, 103-121.
  • Ferreira, L.A., Piette, B. & Zakrzewski, W.J. (2008), Dynamics of the topological structures in inhomogeneous media, Journal of Physics: Conference Series 128: The 5th International Symposium on Quantum Theory and Symmetries. Valladolid, Spain, IOP Publishing, 012027.
  • Zakrzewski, W.J. & Cova, R.J. (1995), Skyrmions in (2+1) Dimensions, in Barut, A. O., Feranchuk, I. D., Shnir, Ya. M. & Tomil'chik, L. M. eds, International Workshop on Quantum Systems: New Trends and Methods. Minsk, World Scientific, Singapore, 84-88.
  • Piette, B.M.A.G. & Zakrzewski, W.J. (1994), General Structures in (2+1) Dimensional Models, in Spatschek, K.H. & Mertens, F.G. eds, Nonlinear Coherent Structures in Physics and Biology Plenum Press, 283-286.

Conference Proceeding

  • Brizhik, L. Eremko, A. Piette, B. & Zakrzewski, W. (2008). Effects of Periodic electromagnetic Field on Charge Transport in Macromolecules. Frohlich Symposium, Biophysical Aspects of Cancer: Electromagnetic Mechanisms.
  • Piette, B. & Zakrzewski, W.J. (2008). Scattering of sine-Gordon Kinks and Breathers on a Finite Width Well. Dynamic Systems and Applications, Atlanta, Georgia, USA.
  • Piette, B. & Zakrzewski, W.J. (2008). Some Aspects of Dynamics of Topological Solitons. 22nd Max Born Symposium,, Wroclaw.
  • Kopeliovich, V.B., Piette, B. & Zakrzewski, W.J. (2006). Mass Terms in the Skyrme Model. Quark 2006, St' Petersbourg, Russia.
  • Piette, B.M.A.G. & Zakrzewski, W.J. (2000). Nontopological structures in the baby-Skyrme model. Solitons, Properties, Dynamics, Interactions and Applications,, Springer.
  • Piette, B.M.A.G. & Zakrzewski, W.J. (1999). Skyrmions and Domain Walls. Properties, Dynamics, Interactions and Applications,, Springer.
  • Ioannidou, T., Piette, B.M.A.G. & Zakrzewski, W.J. (1999). SU(N) Skyrmions and two dimensional CPN Rational Maps. New symmetries and integrable models, Karpacz.
  • Ioannidou, T., Piette, B.M.A.G. & Zakrzewski, W.J. (1999). Three Dimensional Skyrmions and Harmonic Maps. Halifax.
  • Piette, B.M.A.G. & Zakrzewski, W.J (1997). Soliton-like structures in two dimensions and their properties.
  • Piette, B.M.A.G. & Zakrzewski, W.J. (1995). Scattering of extended structures in (2+1) dimensional models,. World Scientific.

Journal Article

Newspaper/Magazine Article

  • Delisle, L., Hussin, V. & Zakrzewski, W.J. (2013). Constant curvature solutions of Grassmannian sigma models: (1) Holomorphic solutions. Journal of Geometry and Physics 66: 24-36.
  • Stichel, P.C. & Zakrzewski, W.J. (2013). Nonstandard approach to gravity for the dark sector of the Universe. Entropy 15(2): 559-605.
  • Ferreira, L.A., Luchini, G. & Zakrzewski, W.J. (2013). The concept of quasi-integrability. AIP Conference Proceedings 1562: 43.
  • Adam, C., Sanchez-Guillen, J., Wereszczynski, A. & Zakrzewski, W.J. (2013). Topological duality between vortices and planar skyrmions in BPS theories with APD symmetries. P D 87: 027703.
  • Ferreira, L.A. & Zakrzewski, W.J. (2012). Attempts to define quasi-integrability. IJGMMP 6: 1261004.
  • Stichel, P.C. & Zakrzewski, W.J. (2012). Darkon fluid - a model for the dark sector of the Universe? IJGMMP 9: 1261014.
  • Ferreira, L.A., Luchini, G & Zakrzewski, W.J. (2012). The concept of quasi-integrability for modified non-linear Schr\"odinger models. JHEP 09: 103.
  • Ferreira, L.A., Klimas, P. & Zakrzewski, W.J. (2011). Properties of some (3+1) dimensional vortex solutions of the $CP^N$ model. Phys. Rev D 84: 085022.
  • Ferreira, L.J. & Zakrzewski, W.J. (2011). Some comments on quasi-integrability. Reports Math. Physics 67: 197.
  • Ferreira, L.A., Klimas, P. & Zakrzewski, W.J. (2011). Some properties of (3+1) dimensional vortex solutions in the extended $CP^N$ Skyrme Faddeev model. JHEP 1112: 098.
  • Al-Alawi, J.H. & Zakrzewski, W.J. (2009). Q-ball scattering on barriers and holes in 1 and 2 Spatial dimensions. Journal of Physics A 42: 245201.
  • Brizhik, L.S. Eremko, A.A. Piette, B.M.A.G. & Zakrzewski, W.J. (2008). Ratchet behaviour of polarons in molecular chains. Journal of Physics: Condensed Matter 20(25): 255242.

Show all publications

Media Contacts

Available for media contact about:

  • Europe: Language, literature & culture: Poland & other East European countries including former Soviet Union
  • Europe: Language, literature & culture: their Science & Universities
  • Atomic particles: Basic matter: particle physics
  • Numerical analysis: nonlinear phenomena
  • Particle theory: Elementary particle theory,
  • Elementary Particle Theory: Elementary particle theory,