Cookies

We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Research & business

View Profile

Publication details

Atkinson D., Allwood D. A., Xiong G., Cooke M. D., Faulkner C. C. & Cowburn R. P. (2003). Magnetic domain-wall dynamics in a submicrometre ferromagnetic structure. Nature Materials 2(2): 85-87.

Author(s) from Durham

Abstract

As fabrication technology pushes the dimensions of ferromagnetic structures into the nanoscale, understanding the magnetization processes of these structures is of fundamental interest, and key to future applications in hard disk drives, magnetic random access memory and other 'spintronic' devices1-4. Measurements on elongated magnetic nanostructures5, 6 highlighted the importance of nucleation and propagation of a magnetic boundary, or domain wall, between opposing magnetic domains in the magnetization reversal process. Domain-wall propagation in confined structures is of basic interest7, 8 and critical to the performance of a recently demonstrated magnetic logic scheme for spintronics9. A previous study of a 500-nm-wide NiFe structure obtained very low domain-wall mobility in a three-layer device10. Here we report room-temperature measurements of the propagation velocity of a domain wall in a single-layer planar Ni80Fe20 ferromagnetic nanowire 200 nm wide. The wall velocities are extremely high and, importantly, the intrinsic wall mobility is close to that in continuous films11, indicating that lateral confinement does not significantly affect the gyromagnetic spin damping parameter to the extreme extent previously suggested10. Consequently the prospects for high-speed domain-wall motion in future nanoscale spintronic devices are excellent.

References

1. Koch,R. H. et al.Magnetization reversal in micron-sized magnetic thin films.Phys. Rev. Lett. 81,
4512–4515 (1998).
2. Cowburn, R. P.,Koltsov,D. K.,Adeyeye, A. O. & Welland, M. E. Single-domain circular nanomagnets.
Phys. Rev. Lett. 83, 1042–1045 (1999).
3. Wolf, S. A. et al. Spintronics: A spin-based electronics vision for the future. Science 294, 1488–1495
(2001).
4. Gerrits, T. et al. Ultrafast precessional magnetization reversal by picosecond magnetic field pulse
shaping. Nature 418, 509–512 (2002).
5. Wernsdorfer,W. et al.Nucleation of magnetization reversal in individual nanosized nickel wires. Phys.
Rev. Lett. 77, 1873–1876 (1996).
6. Wernsdorfer,W. et al.Measurements of magnetization switching in individual nickel nanowires. Phys.
Rev. B 55, 11552–11559 (1997).
7. Tatara, G. & Fukuyama,H.Macroscopic quantum tunnelling of a domain wall in a ferromagnetic
metal. Phys. Rev. B 72, 772–775 (1994).
8. Jamet, J. P. et al. Giant enhancement of domain wall velocity in irradiated ultrathin magnetic
nanowires. IEEE Trans.Magn. 37, 2120–2122 (2001).
9. Allwood,D. A. et al. Submicrometer ferromagnetic NOT gate and shift register. Science 296,
2003–2006 (2002).
10. Ono, T. et al. Propagation of a magnetic domain wall in a submicrometer magnetic wire. Science 284,
468–470 (1999).
11. Redjdal, M., Giusti, J.,Ruane, M. F. & Humphrey, F. B. Thickness dependent wall mobility in thin
permalloy films. J.Appl. Phys. 91, 7547–7549 (2002).
12. Rizzo, N. D. et al. Thermally activated magnetization reversal in submicron magnetic tunnel
junctions for magnetoresistive random access memory.Appl. Phys. Lett. 80, 2335–2337 (2002).
13. Choi, B. C. et al. Ultrafast magnetization reversal dynamics investigated by time domain imaging.
Phys. Rev. Lett. 86, 728–731 (2001).
14.Wu, J. et al. Picosecond large angle reorientation of the magnetization in Ni81Fe19 circular thin-film
elements. J.Appl. Phys. 91, 278–286 (2002).
15. Trunk, T.,Redjal, M.,Kakay, A.,Ruane, M. F. & Humphrey, F. B.Domain wall structure in permalloy
films with decreasing thickness at the Bloch to Neel transition. J.Appl. Phys. 89, 7606–7608 (2001).
16. Cowburn, R. P.,Allwood,D. A.,Xiong, G. & Cooke, M. D. Domain wall injection and propagation in
planar permalloy nanowires. J.Appl. Phys. 91, 6949–6951 (2002).
17. Cowburn, R. P.,Koltsov,D. K.,Adeyeye, A. O. & Welland, M. E. Probing submicron nanomagnets by
magneto-optics.Appl. Phys. Lett. 73, 3947–3949 (1998).
18. Xiong, G.,Allwood,D. A.,Cooke, M. D. & Cowburn, R. P.Magnetic nanoelements for
magnetoelectronics made by focused ion beam milling. Appl. Phys. Lett. 79, 3461–3463 (2001).
19. Atkinson,D.,Allwood,D. A.,Cooke, M. D. & Cowburn, R. P.Nanosecond pulsed field magnetization
reversal in thin-film NiFe studied by Kerr effect magnetometry. J. Phys.D34, 3019–3023 (2001).
20. Ferré, J. in Spin Dynamics in Confined Magnetic Structures I (eds Hillebrands, B. & Ounadjela, K.)
127–160 (Springer,Heidelberg, 2002).
21. Konishi, S.,Yamada, S. & Kusuda, T. Domain-wall velocity, mobility and mean-free-path in permalloy
films. IEEE Trans.Magn. 7, 722–724 (1971).
22.Malozemoff, A. P. & Slonczewski, J. C.Magnetic Domain Walls in Bubble Materials (Academic,New
York, 1979).
23. Ebels,U.,Radulescu, A.,Henry,Y., Piraux, L. & Ounadjela, K. Spin accumulation and domain wall
magnetoresistance in 35 nm Co wires.Phys. Rev. Lett. 84, 983–986 (2000).