We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Research & business

View Profile

Publication details

Worfolk, JC, Bell, S, Simpson, LD, Carne, NA, Francis, SL, Engelbertsen, V, Brown, AP, Walker, J, Viswanath, YK & Benham, AM (2019). Elucidation of the AGR2 interactome in esophageal adenocarcinoma cells identifies a redox sensitive chaperone hub for the quality control of MUC-5AC. Antioxidants & Redox Signaling 31(15): 1117-1132.

Author(s) from Durham


Aims: AGR2 is a tissue-restricted member of the protein disulfide isomerase family that has attracted interest because it is highly expressed in a number of cancers, including gastroesophageal adenocarcinoma. The behavior of AGR2 was analyzed under oxidizing conditions, and an alkylation trapping and immunoprecipitation approach were developed to identify novel AGR2 interacting proteins.

Results: The data show that AGR2 is induced in esophageal adenocarcinoma, where it participates in redox-responsive, disulfide-dependent complexes. AGR2 preferentially engages with MUC-5 as a primary client and is coexpressed with the acidic mucin in Barrett's esophagus and esophageal adenocarcinoma tissue.

Innovation: New partner chaperones for AGR2 have been identified, including peroxiredoxin IV, ERp44, P5, ERp29, and Ero1α. AGR2 interacts with unexpected metabolic enzymes, including aldehyde dehydrogenase (ALDH)3A1, and engages in an alkylation-sensitive association with the autophagy receptor SQSTM1, suggesting a potential mechanism for the postendoplasmic reticulum targeting of AGR2 to mucin granules. Disulfide-driven AGR2 complex formation provides a framework for a limited number of client proteins to interact, rather than for the recruitment of multiple novel clients.

Conclusion: The extended AGR2 interactome will facilitate the development of therapeutics to target AGR2/mucin pathways in esophageal cancer and other conditions, including chronic obstructive pulmonary disease.