Cookies

We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Research & business

View Profile

Publication details

Renedo, J., Ibrahim, A. A., Kazemtabrizi, B., Garcia-Cerrada, A., Rouco, L., Zhao, Q. & Garcia-Gonzalez, J. (2019). A simplified algorithm to solve optimal power flows in hybrid VSC-based AC/DC systems. International Journal of Electrical Power and Energy Systems 110: 781-794.

Author(s) from Durham

Abstract

High Voltage Direct Current systems based on Voltage Source Converters (VSC-HVDC) are increasingly being considered as a viable technology with advantages, above all when using underground or submarine cables, for bulk power transmission. In order to fully understand how VSC-HVDC systems can be best used within existing power systems, it is necessary to adapt conventional tools to carry out system-wide studies including this technology. Along this line, this paper proposes a simplified algorithm to solve optimal power flows (OPFs) in hybrid VSC-based Alternating Current/Direct Current (AC/DC) grids with multi-terminal VSC-HVDC systems. The proposed algorithm makes it possible to seamlessly extend a previous large-scale AC case to which several multi-terminal VSC-HVDC systems must be added. The proposed approach combines two ideas used previously in two different modelling approaches: each VSC is modelled as two generators with a coupling constraint; and DC grids are modelled as notional AC grids, since, in per unit, the equations for the former are a particular case of the latter with resistive lines and no reactive-power injections. In the proposed approach, the hybrid VSC-based AC/DC system is transformed into an equivalent only-AC system. Therefore, the OPF solution of the AC/DC system can be found with the same tool used for the previous AC problem and a simple extension of the original case.