View Profile
Publication details
Dabrowski, K.K. & Paulusma, D. (2017). Contracting Bipartite Graphs to Paths and Cycles. Information Processing Letters 127: 37-42.- Publication type: Journal Article
- ISSN/ISBN: 0020-0190
- DOI: 10.1016/j.ipl.2017.06.013
- Further publication details on publisher web site
- Durham Research Online (DRO) - may include full text
Author(s) from Durham
Abstract
Testing if a given graph G contains the k -vertex path Pk as a minor or as an induced minor is trivial for every fixed integer k≥1. However, the situation changes for the problem of checking if a graph can be modified into Pk by using only edge contractions. In this case the problem is known to be NP-complete even if k=4. This led to an intensive investigation for testing contractibility on restricted graph classes. We focus on bipartite graphs. Heggernes, van 't Hof, Lévêque and Paul proved that the problem stays NP-complete for bipartite graphs if k=6. We strengthen their result from k=6 to k=5. We also show that the problem of contracting a bipartite graph to the 6-vertex cycle C6 is NP-complete. The cyclicity of a graph is the length of the longest cycle the graph can be contracted to. As a consequence of our second result, determining the cyclicity of a bipartite graph is NP-hard.