We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Research & business

View Profile

Publication details

Alves, Sancrey Rodrigues, Dabrowski, Konrad K., Faria, Luerbio, Klein, Sulamita, Sau, Ignasi & dos Santos Souza, Uéverton (2016), On the (Parameterized) Complexity of Recognizing Well-covered (r,l)-graphs, in Chan, T.-H. Hubert, Li, Minming & Wang, Lusheng eds, Lecture Notes in Computer Science 10043: 10th Annual International Conference on Combinatorial Optimization and Applications (COCOA 2016). Hong Kong, China, Springer, Cham, Switzerland, 423-437.

Author(s) from Durham


An (r,ℓ)(r,ℓ)-partition of a graph G is a partition of its vertex set into r independent sets and ℓℓ cliques. A graph is (r,ℓ)(r,ℓ) if it admits an (r,ℓ)(r,ℓ)-partition. A graph is well-covered if every maximal independent set is also maximum. A graph is (r,ℓ)(r,ℓ)-well-covered if it is both (r,ℓ)(r,ℓ) and well-covered. In this paper we consider two different decision problems. In the (r,ℓ)(r,ℓ)-Well-Covered Graph problem ((r,ℓ)(r,ℓ) wcg for short), we are given a graph G, and the question is whether G is an (r,ℓ)(r,ℓ)-well-covered graph. In the Well-Covered (r,ℓ)(r,ℓ)-Graph problem (wc (r,ℓ)(r,ℓ) g for short), we are given an (r,ℓ)(r,ℓ)-graph G together with an (r,ℓ)(r,ℓ)-partition of V(G) into r independent sets and ℓℓ cliques, and the question is whether G is well-covered. We classify most of these problems into P, coNP-complete, NP-complete, NP-hard, or coNP-hard. Only the cases wc(r, 0)g for r≥3r≥3 remain open. In addition, we consider the parameterized complexity of these problems for several choices of parameters, such as the size αα of a maximum independent set of the input graph, its neighborhood diversity, or the number ℓℓ of cliques in an (r,ℓ)(r,ℓ)-partition. In particular, we show that the parameterized problem of deciding whether a general graph is well-covered parameterized by αα can be reduced to the wc (0,ℓ)(0,ℓ) g problem parameterized by ℓℓ, and we prove that this latter problem is in XP but does not admit polynomial kernels unless coNP⊆NP/polycoNP⊆NP/poly.