We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Research & business

View Profile

Publication details

DeGiuli, E., McElwaine, J. N. & Wyart, M. (2016). Phase diagram for inertial granular flows. Physical Review E: covering statistical, nonlinear, biological, and soft matter physics 94(1): 012904.

Author(s) from Durham


Flows of hard granular materials depend strongly on the interparticle friction coefficient μp and on the inertial number I, which characterizes proximity to the jamming transition where flow stops. Guided by numerical simulations, we derive the phase diagram of dense inertial flow of spherical particles, finding three regimes for 10−4≲I≲10−1: frictionless, frictional sliding, and rolling. These are distinguished by the dominant means of energy dissipation, changing from collisional to sliding friction, and back to collisional, as μp increases from zero at constant I. The three regimes differ in their kinetics and rheology; in particular, the velocity fluctuations and the stress ratio both display nonmonotonic behavior with μp, corresponding to transitions between the three regimes of flow. We rationalize the phase boundaries between these regimes, show that energy balance yields scaling relations between microscopic properties in each of them, and derive the strain scale at which particles lose memory of their velocity. For the frictional sliding regime most relevant experimentally, we find for I≥10−2.5 that the growth of the macroscopic friction μ(I) with I is induced by an increase of collisional dissipation. This implies in that range that μ(I)−μ(0)∼I1−2b, where b≈0.2 is an exponent that characterizes both the dimensionless velocity fluctuations L∼I−b and the density of sliding contacts χ∼Ib.