We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Research & business

View Profile

Publication details

Al Moubayed, N, Petrovski, A & McCall, J (2014). D2MOPSO: MOPSO Based on Decomposition and Dominance with Archiving Using Crowding Distance in Objective and Solution Spaces. Evolutionary Computation 22(1): 47-77.

Author(s) from Durham


This paper improves a recently developed multi-objective particle swarm optimizer () that incorporates dominance with decomposition used in the context of multi-objective optimization. Decomposition simplifies a multi-objective problem (MOP) by transforming it to a set of aggregation problems, whereas dominance plays a major role in building the leaders’ archive. introduces a new archiving technique that facilitates attaining better diversity and coverage in both objective and solution spaces. The improved method is evaluated on standard benchmarks including both constrained and unconstrained test problems, by comparing it with three state of the art multi-objective evolutionary algorithms: MOEA/D, OMOPSO, and dMOPSO. The comparison and analysis of the experimental results, supported by statistical tests, indicate that the proposed algorithm is highly competitive, efficient, and applicable to a wide range of multi-objective optimization problems.