Cookies

We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Research & business

View Profile

Publication details for Professor Erin McClymont

Ronkainen, T., McClymont, E.L., Väliranta, M. & Tuittila, E.-S. (2013). The n-alkane and sterol composition of living fen plants as a potential tool for palaeoecological studies. Organic Geochemistry 59: 1-9.

Author(s) from Durham

Abstract

In groundwater-fed fen peatlands, the surface biomass decays rapidly and, as a result, highly humified peat is formed. A high degree of humification constrains palaeoecological studies because reliable identification of plant remains is hampered. Organic geochemistry techniques as a means of identifying historical plant communities have been successfully applied to bog peat. The method has also been applied to fen peat, but without reference to the composition of fen plants. We have applied selected organic geochemistry methods to determine the composition of the neutral lipid fractions from 12 living fen plants, to investigate the potential for the distributions to characterize and separate different fen plants and plant groups. Our results show correspondence with previous studies, e.g. C23 and C25n-alkanes dominating Sphagnum spp. and C27 to C31 alkanes dominating vascular plants. However, we also found similarities in n-alkane distributions between Sphagnum spp. and the below ground parts of some vascular plants. We tested the efficiency of different n-alkane ratios to separate species and plant groups. The ratios used for bog studies (e.g. n-C23/n-C25 and n-C23/n-C29) did not work as consistently for fen plants. Some differences in sterol distribution were found between vascular plants and mosses; in general vascular plants had a higher concentration of sterols. When distributions of n-alkanes, n-alkane ratios and sterols were all included as variables, redundancy analysis (RDA) separated different plant groups into their own clusters. Our results imply that the pattern for bog biomarkers cannot directly be applied to fen environments. Nevertheless, they encourage further testing to determine whether or not the identification of plant groups, plants or plant parts from highly humified peat is possible by applying fen species-specific biomarker proxies.