Cookies

We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Research & business

View Profile

Publication details for Professor Erin McClymont

Frith, N., Hilton, R.G., Howarth, J.D., Gröcke, D.R., Fitzsimons, S.J., Croissant, T., Wang, J., McClymont, E.L., Dahl, J. & Densmore, A.L. (2018). Carbon export from mountain forests enhanced by earthquake-triggered landslides over millennia. Nature Geoscience 11(10): 772-776.

Author(s) from Durham

Abstract

Rapid ground accelerations during earthquakes can trigger landslides that disturb mountain forests and harvest carbon from soils and vegetation. Although infrequent over human timescales, these co-seismic landslides can set the rates of geomorphic processes over centuries to millennia. However, the long-term impacts of earthquakes and landslides on carbon export from the biosphere remain poorly constrained. Here, we examine the sedimentary fill of Lake Paringa, New Zealand, which is fed by a river draining steep mountains proximal to the Alpine Fault. Carbon isotopes reveal enhanced accumulation rates of biospheric carbon after four large earthquakes over the past ~1,100 years, probably reflecting delivery of soil-derived carbon eroded by deep-seated landslides. Cumulatively these pulses of earthquake-mobilized carbon represent 23 ± 5% of the record length, but account for 43 ± 5% of the biospheric carbon in the core. Landslide simulations suggest that 14 ± 5 million tonnes of carbon (MtC) could be eroded in each earthquake. Our findings support a link between active tectonics and the surface carbon cycle and suggest that large earthquakes can significantly contribute to carbon export from mountain forests over millennia.