Cookies

We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Research & business

View Profile

Publication details for Dr Aidan Hindmarch

Hindmarch, AT (2011). Interface magnetism in ferromagnetic metal-compound semiconductor hybrid structures. Spin 1(1): 45-69.

Author(s) from Durham

Abstract

Interfaces between dissimilar materials present a wide range of fascinating physical phenomena. When a nanoscale thin-film of a ferromagnetic metal is deposited in intimate contact with a compound semiconductor, the properties of the interface exhibit a wealth of novel behavior, having immense potential for technological application, and being of great interest from the perspective of fundamental physics. This article presents a review of recent advances in the field of interface magnetism in (001)-oriented ferromagnetic metal/III–V compound semiconductor hybrid structures. Until relatively recently, the majority of research in this area continued to concentrate almost exclusively on the prototypical epitaxial Fe/GaAs(001) system: now, a significant proportion of work has branched out from this theme, including ferromagnetic metal alloys, and other III–V compound semiconductors. After a general overview of the topic, and a review of the more recent literature, we discuss recent results where advances have been made in our understanding of the physics underpinning magnetic anisotropy in these systems: tailoring the terms contributing to the angular-dependent free-energy density by employing novel fabrication methods and ferromagnetic metal electrodes.