Cookies

We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Research & business

View Profile

Publication details for Dr Aidan Hindmarch

Tokaç, M., Wang, M., Jaiswal, S., Rushforth, A.W., Gallagher, B.L., Atkinson, D. & Hindmarch, A.T. (2015). Interfacial Contribution to Thickness Dependent in-plane Anisotropic Magnetoresistance. AIP Advances 5(12): 127108.

Author(s) from Durham

Abstract

We have studied in-plane anisotropic magnetoresistance(AMR) in cobaltfilms with overlayers having designed electrically interface transparency. With an electrically opaque cobalt/overlayer interface, the AMR ratio is shown to vary in inverse proportion to the cobaltfilm thickness; an indication that in-plane AMR is a consequence of anisotropic scattering with both volume and interfacial contributions. The interface scattering anisotropy opposes the volume scattering contribution, causing the AMR ratio to diminish as the cobaltfilm thickness is reduced. An intrinsic interface effect explains the significantly reduced AMR ratio in ultra-thin films.