We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Research & business

View Profile

Publication details for Professor Martin Cann

Townsend, P.D., Rogers, T.L., Pohl, E., Wilson, M.R., McLeish, T.C.B. & Cann, M.J. (2015). Global low-frequency motions in protein allostery: CAP as a model system. Biophysical Reviews 7(2): 175-182.

Author(s) from Durham


Allostery is a fundamental process by which ligand binding to a protein alters its activity at a distant site. There is considerable evidence that allosteric cooperativity can be communicated by the modulation of protein dynamics without conformational change. The Catabolite Activator Protein (CAP) of Escherichia coli is an important experimental exemplar for entropically driven allostery. Here we discuss recent experimentally supported theoretical analysis that highlights the role of global low-frequency dynamics in allostery in CAP and identify how allostery arises as a natural consequence of changes in global low-frequency protein fluctuations on ligand binding.