We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Research & business

View Profile

Publication details for Professor Martin Cann

Townsend, P.D., Dixon, C.H., Slootweg, E.S., Sukarta O.C.A., Yang, A.W.H., Hughes, T.R., Sharples, G.J., Palsson, L.-O., Takken, F.L.W., Goverse, A. & Cann, M.J. (2018). The intracellular immune receptor Rx1 regulates the DNA-binding activity of a Golden2-like transcription factor. Journal of Biological Chemistry 293(9): 3218-3233.

Author(s) from Durham


Plant NLR proteins enable the immune system to recognise and respond to pathogen attack. An early consequence of immune activation is transcriptional reprogramming and some NLRs have been shown to act in the nucleus and interact with transcription factors. The Rx1 NLR protein of potato is further able to bind and distort double-stranded DNA. However, Rx1 host targets that support a role for Rx1 in transcriptional reprogramming at DNA are unknown. Here we report a functional interaction between Rx1 and NbGlk1, a Golden2- like transcription factor. Rx1 binds to NbGlk1 in vitro and in planta. NbGlk1 binds to known Golden2-like consensus DNA sequences. Rx1 reduces the binding affinity of NbGlk1 for DNA in vitro. NbGlk1 activates cellular responses to potato virus X, whereas Rx1 associates with NbGlk1 and prevents its assembly on DNA in planta unless activated by PVX. This study provides new mechanistic insight into how an NLR can co-ordinate an immune signalling response at DNA following pathogen perception.