We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Research & business

View Profile

Publication details for Professor Rob Ferguson

Ferguson, R.I., Parsons, D.R., Lane, S.N. & Hardy, R.J. (2003). Flow in meander bends with recirculation at the inner bank. Water Resources Research 39(11): 1322.

Author(s) from Durham


In highly curved river bends, flow may separate at the inner bank to create a recirculation eddy with weak upstream flow. Very little is known about how recirculation eddies connect with the downstream flow or how the latter is affected by their presence. We investigate these questions using three-dimensional time-averaged computational fluid dynamics models of two natural bends with inner-bank separation. Test measurements of velocity in one bend agree well with the simulation. Common points in the two simulations are that (1) an outer-bank helix is only present in the upstream part of the bend, (2) maximum near-bank velocities are highest here rather than beyond the apex as in most bends, (3) reverse flow extends farther across the channel at the surface than the bed, and (4) flow within the recirculation eddy has a three-dimensional structure, linked with that in the outer-bank free stream. Substantial differences in detail between the two bends appear to be due to differences in upstream planform, manifested through the lateral distribution of inflow velocity.


Ashmore, P. E., R. I. Ferguson, K. L. Prestegaard, P. J. Ashworth, and
C. Paola, Secondary flow in anabranch confluences of a braided, gravelbed
stream, Earth Surf. Processes Landforms, 17, 299– 311, 1992.
Bathurst, J. C., C. R. Thorne, and R. D. Hey, Secondary flow and shear
stress at river bends, J. Hydraul. Div. Am. Soc. Civ. Eng., 105, 1277–
1295, 1979.
Biron, P., B. de Serres, A. G. Roy, and J. L. Best, Shear layer turbulence at
an unequal depth channel confluence, in Turbulence: Perspectives on
Flow and Sediment Transport, edited by N. J. Clifford, J. R. French,
and J. Hardisty, pp. 197– 213, John Wiley, Hoboken, N. J., 1993.
Booker, D. J., D. A. Sear, and A. J. Payne, Modelling three-dimensional
flow structures and patterns of boundary shear stress in a natural poolriffle
sequence, Earth Surf. Processes Landforms, 26, 553–579, 2001.
Bradbrook, K. F., P. M. Biron, S. N. Lane, K. S. Richards, and A. G. Roy,
Investigation of controls on secondary circulation in a simple confluence
geometry using a three-dimensional numerical model, Hydrol. Processes,
12, 1371– 1396, 1998.
Bradbrook, K. F., S. N. Lane, and K. S. Richards, Numerical simulation of
three-dimensional, time-averaged flow structure at river channel confluences,
Water Resour. Res., 36, 2731– 2746, 2000a.
Bradbrook, K. F., S. N. Lane, K. S. Richards, P. M. Biron, and A. G. Roy,
Large eddy simulation of periodic flow characteristics at river channel
confluences, J. Hydraul. Res., 38, 207– 215, 2000b.
Czernuszenko, W., and A. A. Rylov, A generalisation of Prandtl’s model for
3D open channel flows, J. Hydraul. Res., 38, 133–139, 2000.
Dietrich, W. E., and J. D. Smith, Influence of the point bar on flow through
curved channels, Water Resour. Res., 19, 1173– 1192, 1983.
Frothingham, K. M., and B. L. Rhoads, Three-dimensional flow structure
and channel change in an asymmetrical compound meander loop,
Embarras River, Illinois, Earth Surf. Processes Landforms, 28, 625 –
644, 2003.
Hardy, R. J., S. N. Lane, R. I. Ferguson, and D. R. Parsons, Assessing the
credibility of a series of computational fluid dynamics simulations of
open channel flow, Hydrol. Processes, 17, 1539– 1560, 2003.
Hodskinson, A., and R. I. Ferguson, Numerical modelling of separated flow
in river bends: Model testing and experimental investigation of geometric
controls on the extent of flow separation at the concave bank, Hydrol.
Processes, 12, 1323–1338, 1998.
Huang, J., L. J.Weber, and Y. G. Lai, Three-dimensional numerical study of
flows in open-channel junctions, J. Hydraul. Eng., 128, 268–280, 2002.
Lane, S. N., and K. S. Richards, The ‘‘validation’’ of hydrodynamic models:
Some critical perspectives, in Model Validation: Perspectives in
Hydrological Science, edited by M. G. Anderson and P. D. Bates,
pp. 413– 438, John Wiley, Hoboken, N. J., 2001.
Lane, S. N., P. M. Biron, K. F. Bradbrook, J. B. Butler, J. H. Chandler,
M. D. Crowell, S. J. McLelland, K. S. Richards, and A. G. Roy, Threedimensional
measurement of river channel flow processes using acoustic
Doppler velocimetry, Earth Surf. Processes Landforms, 23, 1247–1267,
Lane, S. N., K. F. Bradbrook, K. S. Richards, P. A. Biron, and A. G. Roy,
The application of computational fluid dynamics to natural river channels:
Three-dimensional versus two-dimensional approaches, Geomorphology,
29, 1 –20, 1999.
Lane, S. N., K. F. Bradbrook, K. S. Richards, P. M. Biron, and A. G. Roy,
Secondary circulation cells in river channel confluences: Measurement
artefacts or coherent flow structures?, Hydrol. Processes, 14, 2047–
2071, 2000.
Launder, B. E., and D. B. Spalding, The numerical computation of turbulent
flows, Comput. Methods Appl. Mech. Eng., 3, 269– 289, 1974.
Leeder, M. R., and P. H. Bridge, Flow separation in meander bends, Nature,
253, 338– 339, 1975.
Leopold, L. B., R. A. Bagnold, M. G. Wolman, and L. M. Brush, Flow
resistance in sinuous and irregular channels, U.S. Geol. Surv. Prof. Pap.,
282D, 111– 134, 1960.
Leschziner, M. A., and W. Rodi, Calculation of strongly curved open
channel flow, J. Hydraul. Eng., 105, 1297– 1314, 1979.
Lien, F. S., and M. A. Leschziner, Application of an RNG turbulence model
to flow over a backwards-facing step, Comput. Fluids, 23, 983– 1004,
Meselhe, E. A., and F. Sotiropolous, Three-dimensional numerical model
for open channels with free surface variations, J. Hydraul. Res., 38, 115–
121, 2000.
Nicholas, A. P., and G. H. S. Smith, Numerical simulation of three-dimensional
flow hydraulics in a braided channel, Hydrol. Processes, 13, 913–
929, 1999.
Pantankar, S. V., and D. B. Spalding, A calculation procedure for heat, mass
and momentum transport in three-dimensional parabolic flows, Int. J.
Heat Mass Transf., 15, 1787– 1806, 1972.
Parsons, D. R., Flow separation in meander bends, Ph.D. thesis, 294 pp.,
Dep. of Geogr., Sheffield Univ., Sheffield, U. K., 2003.
Rhoads, B. L., and S. T. Kenworthy, Flow structure at an asymmetrical
stream confluence, Geomorphology, 11, 273–293, 1995.
Rhoads, B. L., and S. T. Kenworthy, On secondary circulation, helical
motion and Rozovskii-based analysis of time-averaged two-dimensional
velocity fields at confluences, Earth Surf. Processes Landforms, 24,
369– 375, 1999.
Rhoads, B. L., and A. N. Sukhodolov, Field investigation of three-dimensional
flow structure at stream confluences: 1. Thermal mixing and timeaveraged
velocities, Water Resour. Res., 37, 2393–2410, 2001.
Roache, P. J., Quantification of uncertainty in computational fluid
dynamics, Annu. Rev. Fluid Mech., 29, 123– 160, 1997.
Rozovskii, I. L., Flow of Water in Bends of Open Channels (in Russian),
Acad. of Sci. of the Ukrainian SSR, Kiev, 1957. (English translation, Isr.
Program for Sci. Transl., Jerusalem, 1961.)
Sofialidis, D., and P. Prinos, Turbulent flow in open channels with smooth
and rough floodplains, J. Hydraul. Res., 37, 615–640, 2000.
Sukhodolov, A. N., and B. L. Rhoads, Field investigation of three-dimensional
flow structure at stream confluences: 2. Turbulence, Water Resour.
Res., 37, 2411 – 2424, 2001.
Thorne, C. R., and R. D. Hey, Direct measurements of secondary currents at
a river inflexion point, Nature, 280, 226–228, 1979.
Thorne, C. R., and S. Rais, Direct measurement of secondary currents in a
meandering sand-bed river, Nature, 315, 746– 747, 1985.
Van Alphen, J. S. L. J., P. M. Bloks, and P. Hoekstra, Flow and grainsize
pattern in a sharply curved river bend, Earth Surf. Processes Landforms,
9, 513– 522, 1984.
Yakhot, V., and S. A. Orszag, Renormalization group analysis of turbulence,
J. Sci. Comput., 1, 536– 551, 1986.
Yakhot, V., S. A. Orszag, S. Thangham, T. B. Gatshi, and C. G. Speziale,
Development of a turbulence model for shear flow by a double expansion
technique, Phys. Fluids A, 4, 1510– 1520, 1992.