We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Research & business

View Profile

Publication details for Dr Junli Liu

Liu, J., Moore, S. & Lindsey, K. (2017). Modelling Plant Cell Growth. eLS 1-7.

Author(s) from Durham


Plants are sessile organisms and they must adapt their growth to a changing environment. Understanding plant growth requires to study the interplay of turgor, cellular hydrodynamics, mechanical properties of cell walls and addition of materials to cell walls, as well as the actions of phytohormones. Mathematical modelling is a useful tool for tackling the complexity in plant growth. The scope of this article is to discuss the fundamental aspects of modelling plant cell growth. In order for a plant cell to grow, the cell wall must expand, water must enter the cell and turgor pressure must be able to provide mechanical support. During cell growth, the relative change in the water volume and the relative change in cell wall chamber volume are approximately equal. Mathematical equations for modelling plant cell growth are described to establish how cell volume and turgor can be calculated. Mathematical equations for ion transport are introduced to establish how osmotic pressure can be calculated. Combination of those equations formulates a method for modelling plant cell growth. Modelling of auxin dynamics, which play a key role in controlling cell expansion, is also described. One of the future challenges is to model the interplay between plant growth and auxin dynamics.