Cookies

We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Research & business

View Profile

Publication details for Simon Ross

Balasubramanian, Vijay, Kar, Arjun, Ross, Simon F. & Ugajin, Tomonori (2020). Spin structures and baby universes. Journal of High Energy Physics 2020(9): 192.

Author(s) from Durham

Abstract

We extend a 2d topological model of the gravitational path integral to include sums over spin structure, corresponding to Neveu-Schwarz (NS) or Ramond (R) boundary conditions for fermions. This path integral corresponds to a correlator of boundary creation operators on a non-trivial baby universe Hilbert space, and vanishes when the number of R boundaries is odd. This vanishing implies a non-factorization of the correlator, which necessitates a dual interpretation of the bulk path integral in terms of a product of partition functions (associated to NS boundaries) and Witten indices (associated to R boundaries), averaged over an ensemble of theories with varying Hilbert space dimension and different numbers of bosonic and fermionic states. We also consider a model with End-of-the-World (EOW) branes, for which the dual ensemble then includes a sum over randomly chosen fermionic and bosonic states. We propose two modifications of the bulk path integral which restore an interpretation in a single dual theory: (i) a geometric prescription where we add extra boundaries with a sum over their spin structures, and (ii) an algebraic prescription involving “spacetime D-branes”. We extend our ideas to Jackiw-Teitelboim gravity, and propose a dual description of a single unitary theory with spin structure in a system with eigenbranes.