We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Research & business

View Profile

Publication details for Professor Ashraf Osman

Osman, Ashraf S. & Jacobsz, S.W. (2019). Analysis of maximum arching conditions in active plane-strain trapdoors in sand. Computers and Geotechnics 113: 103089.

Author(s) from Durham


The trapdoor problem is a useful model to understand the stress distribution around geo-structures. This paper focuses on evaluating the conditions of maximum arching (minimum loads on trapdoors) developing during the lowering of plane-strain active trapdoors in cohesionless granular materials. A parametric study using finite element analysis has been performed to investigate various factors affecting the maximum arching conditions in active trapdoors, with a particular focus on the effect of soil dilatancy. The paper also presents rigorous upper bound limit analysis solutions. Previously published solutions dealing with soil non-associativity have been discussed and compared with the finite element results. The finite element analysis shows that using a Mohr Column model with the associative flow rule and reduced strength parameters, overestimates the load reduction on trapdoors compared with a non-associative model with full soil strength parameters.